File size: 22,985 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Dict, Any

from ..builder import ATTENTIONS
from ..utils.stylization_block import StylizationBlock

from tutel import moe as tutel_moe
from tutel import net


def zero_module(module: nn.Module) -> nn.Module:
    """
    Zero out the parameters of a module and return it.
    
    Args:
        module (nn.Module): The input PyTorch module.
    
    Returns:
        nn.Module: The module with zeroed parameters.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


class MOE(nn.Module):
    """
    Mixture of Experts (MoE) layer with support for time embeddings and optional framerate conditioning.

    Args:
        num_experts (int): Number of experts in the MoE layer.
        topk (int): Number of top experts selected per input.
        input_dim (int): Dimensionality of the input features.
        ffn_dim (int): Dimensionality of the feed-forward network (FFN) used inside each expert.
        output_dim (int): Dimensionality of the output features.
        num_heads (int): Number of attention heads used in the model.
        max_seq_len (int): Maximum sequence length for the input data.
        gate_type (str): Type of gating mechanism used for MoE (e.g., "topk").
        gate_noise (float): Noise added to the gating mechanism for improved exploration.
        framerate (bool, optional): Whether to use framerate-based embedding. Defaults to False.
        embedding (bool, optional): Whether to use positional embeddings. Defaults to True.

    Attributes:
        proj (nn.Linear): Linear projection layer applied after MoE processing.
        activation (nn.GELU): Activation function used in the feed-forward layers.
        model (tutel_moe.moe_layer): The Mixture of Experts layer.
        embedding (torch.nn.Parameter): Positional or framerate-based embedding for input data.
        aux_loss (torch.Tensor): Auxiliary loss from MoE layer for load balancing across experts.
    """

    def __init__(self, num_experts: int, topk: int, input_dim: int, ffn_dim: int, output_dim: int,
                 num_heads: int, max_seq_len: int, gate_type: str, gate_noise: float, embedding: bool = True):
        super().__init__()

        # Linear projection layer to project from input_dim to output_dim
        self.proj = nn.Linear(input_dim, output_dim)
        # Activation function (GELU)
        self.activation = nn.GELU()

        # Initialize Tutel MoE layer with gating and expert setup
        try:
            data_group = net.create_groups_from_world(group_count=1).data_group
        except:
            data_group = None

        self.model = tutel_moe.moe_layer(
            gate_type={
                'type': gate_type,
                'k': topk,
                'fp32_gate': True,
                'gate_noise': gate_noise,
                'capacity_factor': 1.5  # Capacity factor to allow extra room for expert routing
            },
            experts={
                'type': 'ffn',  # Feed-forward expert type
                'count_per_node': num_experts,
                'hidden_size_per_expert': ffn_dim,
                'activation_fn': lambda x: F.gelu(x)  # Activation inside experts
            },
            model_dim=input_dim,
            batch_prioritized_routing=True,  # Prioritize routing based on batch size
            is_gshard_loss=False,  # Whether to use GShard loss for load balancing
            group=data_group
        )

        # Determine whether to use positional embedding or framerate embedding
        self.use_embedding = embedding
        if self.use_embedding:
            self.embedding = nn.Parameter(torch.randn(1, max_seq_len, num_heads, input_dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward pass through the MoE layer with optional framerate embedding.

        Args:
            x (torch.Tensor): Input tensor of shape (B, T, H, D), where
                              B is the batch size,
                              T is the sequence length,
                              H is the number of attention heads,
                              D is the dimensionality of each head.

        Returns:
            torch.Tensor: Output tensor of shape (B, T, H, output_dim), where output_dim is the projected dimensionality.
        """
        B, T, H, D = x.shape

        # Apply positional or framerate-based embedding
        if self.use_embedding:
            # Default positional embedding
            x = x + self.embedding[:, :T, :, :]

        # Flatten the input for MoE processing
        x = x.reshape(-1, D)
        
        # Pass through the Mixture of Experts layer and apply the projection
        y = self.proj(self.activation(self.model(x)))

        # Auxiliary loss for expert load balancing
        self.aux_loss = self.model.l_aux

        # Reshape the output back to (B, T, H, output_dim)
        y = y.reshape(B, T, H, -1)
        
        return y


def get_ffn(latent_dim: int, ffn_dim: int) -> nn.Sequential:
    """
    Create a feed-forward network (FFN) block.

    Args:
        latent_dim (int): Input/output dimension of the FFN.
        ffn_dim (int): Hidden dimension of the FFN.

    Returns:
        nn.Sequential: A sequential block consisting of two linear layers and a GELU activation in between.
    """
    return nn.Sequential(nn.Linear(latent_dim, ffn_dim), nn.GELU(), nn.Linear(ffn_dim, latent_dim))


@ATTENTIONS.register_module()
class ArtAttention(nn.Module):
    """
    ArtAttention module for attending to multi-modal inputs (e.g., text, music, speech, video) 
    and generating time-dependent motion features using a Mixture of Experts (MoE) mechanism.

    Args:
        latent_dim (int): Dimensionality of the latent representation.
        num_heads (int): Number of attention heads.
        num_experts (int): Number of experts in the Mixture of Experts.
        topk (int): Number of top experts selected by the gating mechanism.
        gate_type (str): Type of gating mechanism for the MoE layer.
        gate_noise (float): Noise level for the gating mechanism.
        ffn_dim (int): Dimensionality of the feed-forward network inside the MoE.
        time_embed_dim (int): Dimensionality of the time embedding for stylization.
        max_seq_len (int): Maximum length of the motion sequence.
        dropout (float): Dropout rate applied to the output of the MoE and attention layers.
        motion_moe_dropout (float): Dropout rate applied to the motion MoE.
        has_text (bool): Whether the input includes text features.
        has_music (bool): Whether the input includes music features.
        has_speech (bool): Whether the input includes speech features.
        has_video (bool): Whether the input includes video features.
        norm (str): Type of normalization layer to use ('LayerNorm' or 'RMSNorm').

    Inputs:
        - x (torch.Tensor): Tensor of shape (B, T, D), where B is the batch size, 
          T is the sequence length, and D is the dimensionality of the input motion data.
        - emb (torch.Tensor): Time embedding for stylization, of shape (B, T, time_embed_dim).
        - src_mask (torch.Tensor): Mask for the input data, of shape (B, T).
        - motion_length (torch.Tensor): Tensor of shape (B,) representing the motion length.
        - num_intervals (int): Number of intervals for processing the motion data.
        - text_cond (torch.Tensor, optional): Conditioning mask for text data, of shape (B, 1).
        - text_word_out (torch.Tensor, optional): Word features for text, of shape (B, M, latent_dim).
        - music_cond (torch.Tensor, optional): Conditioning mask for music data, of shape (B, 1).
        - music_word_out (torch.Tensor, optional): Word features for music, of shape (B, M, latent_dim).
        - speech_cond (torch.Tensor, optional): Conditioning mask for speech data, of shape (B, 1).
        - speech_word_out (torch.Tensor, optional): Word features for speech, of shape (B, M, latent_dim).
        - video_cond (torch.Tensor, optional): Conditioning mask for video data, of shape (B, 1).
        - video_word_out (torch.Tensor, optional): Word features for video, of shape (B, M, latent_dim).
        - duration (torch.Tensor, optional): Duration of each motion sequence, of shape (B,).

    Outputs:
        - y (torch.Tensor): The final attended output, with the same shape as input x (B, T, D).
    """
    def __init__(self,
                 latent_dim,
                 num_heads,
                 num_experts,
                 topk,
                 gate_type,
                 gate_noise,
                 ffn_dim,
                 time_embed_dim,
                 max_seq_len,
                 dropout,
                 num_datasets,
                 has_text=False,
                 has_music=False,
                 has_speech=False,
                 has_video=False,
                 norm="LayerNorm"):
        super().__init__()
        self.latent_dim = latent_dim
        self.num_heads = num_heads
        self.max_seq_len = max_seq_len

        # Choose normalization type
        if norm == "LayerNorm":
            Norm = nn.LayerNorm

        # Parameters for time-related functions
        self.sigma = nn.Parameter(torch.Tensor([100]))  # Sigma for softmax-based time weighting
        self.time = torch.arange(max_seq_len)

        # Normalization for motion features
        self.norm = Norm(latent_dim * 10)

        # MoE for motion data
        self.motion_moe = MOE(num_experts, topk, latent_dim, latent_dim * 4,
                              5 * latent_dim, num_heads, max_seq_len,
                              gate_type, gate_noise)
        self.motion_moe_dropout = nn.Dropout(p=dropout)  # Dropout for motion MoE
        self.key_motion_scale = nn.Parameter(torch.Tensor([1.0]))

        # Default keys and values
        self.num_datasets = num_datasets
        self.key_dataset = nn.Parameter(torch.randn(num_datasets, 48, 10, latent_dim))
        self.key_dataset_scale = nn.Parameter(torch.Tensor([1.0]))
        self.value_dataset = nn.Parameter(torch.randn(num_datasets, 48, 10, latent_dim))
        
        self.key_rotation = nn.Parameter(torch.randn(3, 16, 10, latent_dim))
        self.value_rotation = nn.Parameter(torch.randn(3, 16, 10, latent_dim))
        self.key_rotation_scale = nn.Parameter(torch.Tensor([1.0]))

        # Conditional MoE layers for each modality (if applicable)
        self.has_text = has_text
        self.has_music = has_music
        self.has_speech = has_speech
        self.has_video = has_video
        
        if has_text or has_music or has_speech or has_video:
            self.cond_moe = MOE(num_experts, topk, latent_dim, latent_dim * 4,
                                2 * latent_dim, num_heads, max_seq_len,
                                gate_type, gate_noise, embedding=False)
        if has_text:
            self.norm_text = Norm(latent_dim * 10)
            self.key_text_scale = nn.Parameter(torch.Tensor([1.0]))
        if has_music:
            self.norm_music = Norm(latent_dim * 10)
            self.key_music_scale = nn.Parameter(torch.Tensor([1.0]))
        if has_speech:
            self.norm_speech = Norm(latent_dim * 10)
            self.key_speech_scale = nn.Parameter(torch.Tensor([1.0]))
        if has_video:
            self.norm_video = Norm(latent_dim * 10)
            self.key_video_scale = nn.Parameter(torch.Tensor([1.0]))

        # Template functions for Taylor expansion (state, velocity, acceleration, jerk)
        self.template_s = get_ffn(latent_dim, ffn_dim)
        self.template_v = get_ffn(latent_dim, ffn_dim)
        self.template_a = get_ffn(latent_dim, ffn_dim)
        self.template_j = get_ffn(latent_dim, ffn_dim)
        self.template_t = nn.Sequential(nn.Linear(latent_dim, ffn_dim),
                                        nn.GELU(), nn.Linear(ffn_dim, 1))
        self.t_sigma = nn.Parameter(torch.Tensor([1]))  # Sigma for Taylor expansion

        # Final projection with stylization block
        self.proj_out = StylizationBlock(latent_dim * num_heads,
                                         time_embed_dim, dropout)

    def forward(self,
                x: torch.Tensor,
                emb: torch.Tensor,
                src_mask: torch.Tensor,
                motion_length: torch.Tensor,
                num_intervals: int,
                text_cond: Optional[torch.Tensor] = None,
                text_word_out: Optional[torch.Tensor] = None,
                music_cond: Optional[torch.Tensor] = None,
                music_word_out: Optional[torch.Tensor] = None,
                speech_cond: Optional[torch.Tensor] = None,
                speech_word_out: Optional[torch.Tensor] = None,
                video_cond: Optional[torch.Tensor] = None,
                video_word_out: Optional[torch.Tensor] = None,
                duration: Optional[torch.Tensor] = None,
                dataset_idx: Optional[torch.Tensor] = None,
                rotation_idx: Optional[torch.Tensor] = None,
                **kwargs) -> torch.Tensor:
        """
        Forward pass for the ArtAttention module, handling multi-modal inputs.

        Args:
            x (torch.Tensor): Input motion data of shape (B, T, D).
            emb (torch.Tensor): Time embedding for stylization.
            src_mask (torch.Tensor): Source mask for the input data.
            motion_length (torch.Tensor): Length of the motion data.
            num_intervals (int): Number of intervals for motion data.
            text_cond (torch.Tensor, optional): Conditioning mask for text data.
            text_word_out (torch.Tensor, optional): Text word output features.
            music_cond (torch.Tensor, optional): Conditioning mask for music data.
            music_word_out (torch.Tensor, optional): Music word output features.
            speech_cond (torch.Tensor, optional): Conditioning mask for speech data.
            speech_word_out (torch.Tensor, optional): Speech word output features.
            video_cond (torch.Tensor, optional): Conditioning mask for video data.
            video_word_out (torch.Tensor, optional): Video word output features.
            duration (torch.Tensor, optional): Duration of each motion sequence.

        Returns:
            y (torch.Tensor): The attended multi-modal motion features.
        """
        
        B, T, D = x.shape  # Batch size (B), Time steps (T), Feature dimension (D)
        H = self.num_heads
        L = self.latent_dim

        # Pass motion data through MoE
        motion_feat = self.motion_moe(self.norm(x).reshape(B, T, H, -1))
        motion_feat = self.motion_moe_dropout(motion_feat)

        # Reshape motion data for attention
        x = x.reshape(B, T, H, -1)

        # Apply source mask and compute attention over motion features
        src_mask = src_mask.view(B, T, H, 1)
        body_value = motion_feat[:, :, :, :L] * src_mask
        body_key = motion_feat[:, :, :, L: 2 * L] + (1 - src_mask) * -1000000
        body_key = F.softmax(body_key, dim=2)
        body_query = F.softmax(motion_feat[:, :, :, 2 * L: 3 * L], dim=-1)
        body_attention = torch.einsum('bnhd,bnhl->bndl', body_key, body_value)
        body_feat = torch.einsum('bndl,bnhd->bnhl', body_attention, body_query)
        body_feat = body_feat.reshape(B, T, D)

        # Key and value attention for motion
        key_motion = motion_feat[:, :, :, 3 * L: 4 * L].contiguous()
        key_motion = key_motion.view(B, T, H, -1)
        key_motion = (key_motion + (1 - src_mask) * -1000000) / self.key_motion_scale

        value_motion = motion_feat[:, :, :, 4 * L:].contiguous() * src_mask
        value_motion = value_motion.view(B, T, H, -1)

        # Process multi-modal conditioning (text, music, speech, video)
        key_dataset = self.key_dataset.index_select(0, dataset_idx) / self.key_dataset_scale
        value_dataset = self.value_dataset.index_select(0, dataset_idx)
        key_rotation = self.key_rotation.index_select(0, rotation_idx) / self.key_rotation_scale
        value_rotation = self.value_rotation.index_select(0, rotation_idx)
        key = torch.cat((key_motion, key_dataset, key_rotation), dim=1)
        value = torch.cat((value_motion, value_dataset, value_rotation), dim=1)
        N = 64
        if self.has_text and text_word_out is not None and torch.sum(text_cond) > 0:
            M = text_word_out.shape[1]
            text_feat = self.norm_text(text_word_out).reshape(B, M, H, -1)
            text_feat = self.cond_moe(text_feat)
            key_text = text_feat[:, :, :, :L].contiguous()
            key_text = key_text + (1 - text_cond.view(B, 1, 1, 1)) * -1000000
            key_text = key_text / self.key_text_scale
            key = torch.cat((key, key_text), dim=1)
            value_text = text_feat[:, :, :, L:].contiguous()
            value_text = value_text * text_cond.view(B, 1, 1, 1)
            value = torch.cat((value, value_text), dim=1)
            N += M

        if self.has_music and music_word_out is not None and torch.sum(music_cond) > 0:
            M = music_word_out.shape[1]
            music_feat = self.norm_music(music_word_out).reshape(B, M, H, -1)
            music_feat = self.cond_moe(music_feat)
            key_music = music_feat[:, :, :, :L].contiguous()
            key_music = key_music + (1 - music_cond.view(B, 1, 1, 1)) * -1000000
            key_music = key_music / self.key_music_scale
            key = torch.cat((key, key_music), dim=1)
            value_music = music_feat[:, :, :, L:].contiguous()
            value_music = value_music * music_cond.view(B, 1, 1, 1)
            value = torch.cat((value, value_music), dim=1)
            N += M

        if self.has_speech and speech_word_out is not None and torch.sum(speech_cond) > 0:
            M = speech_word_out.shape[1]
            speech_feat = self.norm_speech(speech_word_out).reshape(B, M, H, -1)
            speech_feat = self.cond_moe(speech_feat)
            key_speech = speech_feat[:, :, :, :L].contiguous()
            key_speech = key_speech + (1 - speech_cond.view(B, 1, 1, 1)) * -1000000
            key_speech = key_speech / self.key_speech_scale
            key = torch.cat((key, key_speech), dim=1)
            value_speech = speech_feat[:, :, :, L:].contiguous()
            value_speech = value_speech * speech_cond.view(B, 1, 1, 1)
            value = torch.cat((value, value_speech), dim=1)
            N += M

        if self.has_video and video_word_out is not None and torch.sum(video_cond) > 0:
            M = video_word_out.shape[1]
            video_feat = self.norm_video(video_word_out).reshape(B, M, H, -1)
            video_feat = self.cond_moe(video_feat)
            key_video = video_feat[:, :, :, :L].contiguous()
            key_video = key_video + (1 - video_cond.view(B, 1, 1, 1)) * -1000000 
            key_video = key_video + (1 - src_mask) * -1000000
            key_video = key_video / self.key_video_scale
            key = torch.cat((key, key_video), dim=1)
            value_video = video_feat[:, :, :, L:].contiguous()
            value_video = value_video * video_cond.view(B, 1, 1, 1) * src_mask
            value= torch.cat((value, value_video), dim=1)
            N += M

        key = F.softmax(key, dim=1)
        # B, H, d, l
        template = torch.einsum('bnhd,bnhl->bhdl', key, value)
        template_t_feat = self.template_t(template)
        template_t = torch.sigmoid(template_t_feat / self.t_sigma)
        template_t = template_t * motion_length.view(B, 1, 1, 1)
        template_t = template_t * duration.view(B, 1, 1, 1)
        org_t = self.time[:T].type_as(x)

        # Handle time-based calculations
        NI = num_intervals
        t = org_t.clone().view(1, 1, -1, 1, 1).repeat(B // NI, NI, 1, 1, 1)
        t = t * duration.view(B // NI, NI, 1, 1, 1)
        template_t = template_t.view(-1, NI, H, L)
        motion_length = motion_length.view(-1, NI)
        for b_ix in range(B // NI):
            sum_frames = 0
            for i in range(NI):
                t[b_ix, i] += sum_frames * float(duration[b_ix])
                template_t[b_ix, i] += sum_frames * float(duration[b_ix])
                sum_frames += motion_length[b_ix, i]
        template_t = template_t.permute(0, 2, 1, 3)
        template_t = template_t.unsqueeze(1).repeat(1, NI, 1, 1, 1)
        template_t = template_t.reshape(B, 1, H, -1)
        time_delta = t.view(B, -1, 1, 1) - template_t
        time_sqr = time_delta * time_delta
        time_coef = F.softmax(-time_sqr, dim=-1)

        template = template.view(-1, NI, H, L, L)
        template = template.permute(0, 2, 1, 3, 4).unsqueeze(1)
        template = template.repeat(1, NI, 1, 1, 1, 1)
        template = template.reshape(B, H, -1, L)

        # Taylor expansion for motion
        template_s = template + self.template_s(template)  # state
        template_v = template + self.template_v(template)  # velocity
        template_a = template + self.template_a(template)  # acceleration
        template_j = template + self.template_j(template)  # jerk
        template_t = template_t.view(B, H, -1, 1)
        template_a0 = template_s - template_v * template_t + \
            template_a * template_t * template_t - \
            template_j * template_t * template_t * template_t
        template_a1 = template_v - 2 * template_a * template_t + \
            3 * template_j * template_t * template_t
        template_a2 = template_a - 3 * template_j * template_t
        template_a3 = template_j
        a0 = torch.einsum('bnhd,bhdl->bnhl', time_coef,
                          template_a0).reshape(B, T, D)
        a1 = torch.einsum('bnhd,bhdl->bnhl', time_coef,
                          template_a1).reshape(B, T, D)
        a2 = torch.einsum('bnhd,bhdl->bnhl', time_coef,
                          template_a2).reshape(B, T, D)
        a3 = torch.einsum('bnhd,bhdl->bnhl', time_coef,
                          template_a3).reshape(B, T, D)
        t = t.view(B, -1, 1)
        y_t = a0 + a1 * t + a2 * t * t + a3 * t * t * t
        y_s = body_feat
        y = x.reshape(B, T, D) + self.proj_out(y_s + y_t, emb)

        if self.training:
            # Add auxiliary losses during training
            self.aux_loss = self.motion_moe.aux_loss
            if self.has_text or self.has_music or self.has_speech or self.has_video:
                if hasattr(self.cond_moe, 'aux_loss') and self.cond_moe.aux_loss is not None:
                    self.aux_loss += self.cond_moe.aux_loss
                    self.cond_moe.aux_loss = None
            mu = template_t_feat.squeeze(-1).mean(dim=-1)
            logvar = torch.log(template_t_feat.squeeze(-1).std(dim=-1))
            logvar[logvar > 1000000] = 0
            logvar[logvar < -1000000] = 0
            self.kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())

        return y