File size: 6,392 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from collections import OrderedDict
import torch
import torch.distributed as dist
from mmcv.runner import BaseModule
from typing import Dict, Tuple, List


def to_cpu(x: torch.Tensor) -> torch.Tensor:
    """Move a tensor to CPU and detach it from the computation graph.
    
    Args:
        x (torch.Tensor): The input tensor.
    
    Returns:
        torch.Tensor: The tensor detached and moved to CPU.
    """
    if isinstance(x, torch.Tensor):
        return x.detach().cpu()
    return x


class BaseArchitecture(BaseModule):
    """Base class for mogen architecture.

    Args:
        init_cfg (dict, optional): Initialization config for the module.
    """

    def __init__(self, init_cfg: dict = None):
        super(BaseArchitecture, self).__init__(init_cfg)

    def forward_train(self, **kwargs):
        """Forward computation during training."""
        pass

    def forward_test(self, **kwargs):
        """Forward computation during testing."""
        pass

    def _parse_losses(self, losses: Dict[str, torch.Tensor]) -> Tuple[torch.Tensor, Dict[str, float]]:
        """Parse the raw outputs (losses) of the network.
        
        Args:
            losses (dict): Raw output of the network, which usually contains
                losses and other necessary information.
        
        Returns:
            tuple[Tensor, dict]: (loss, log_vars)
                - loss is the loss tensor which may be a weighted sum of all losses,
                - log_vars contains all the variables to be logged.
        """
        log_vars = OrderedDict()
        for loss_name, loss_value in losses.items():
            if isinstance(loss_value, torch.Tensor):
                log_vars[loss_name] = loss_value.mean()
            elif isinstance(loss_value, list):
                log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
            else:
                raise TypeError(f'{loss_name} is not a tensor or list of tensors')

        loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)

        log_vars['loss'] = loss
        for loss_name, loss_value in log_vars.items():
            # reduce loss when distributed training
            if dist.is_available() and dist.is_initialized():
                loss_value = loss_value.data.clone()
                dist.all_reduce(loss_value.div_(dist.get_world_size()))
            log_vars[loss_name] = loss_value.item()

        return loss, log_vars

    def train_step(self, data: Dict, optimizer: torch.optim.Optimizer) -> Dict:
        """The iteration step during training.

        This method defines an iteration step during training, excluding backpropagation
        and optimizer updating, which are handled by an optimizer hook.

        Args:
            data (dict): The output of the dataloader.
            optimizer (torch.optim.Optimizer): The optimizer object (unused).

        Returns:
            dict: A dictionary containing the loss, log_vars for logging, and the number of samples.
                - ``loss``: A tensor for backpropagation, which may be a weighted sum of multiple losses.
                - ``log_vars``: All the variables to be logged.
                - ``num_samples``: The number of samples in the batch.
        """
        losses = self(**data)
        loss, log_vars = self._parse_losses(losses)

        outputs = dict(loss=loss, log_vars=log_vars, num_samples=len(data['motion']))
        return outputs

    def val_step(self, data: Dict, optimizer: torch.optim.Optimizer = None) -> Dict:
        """The iteration step during validation.

        Args:
            data (dict): The output of the dataloader.
            optimizer (torch.optim.Optimizer, optional): The optimizer object (unused).

        Returns:
            dict: A dictionary containing the loss, log_vars for logging, and the number of samples.
        """
        losses = self(**data)
        loss, log_vars = self._parse_losses(losses)

        outputs = dict(loss=loss, log_vars=log_vars, num_samples=len(data['motion']))
        return outputs

    def forward(self, **kwargs):
        """Forward computation based on the training or testing mode."""
        if self.training:
            return self.forward_train(**kwargs)
        else:
            return self.forward_test(**kwargs)

    def split_results(self, results: Dict[str, torch.Tensor]) -> List[Dict]:
        """Split batched results into individual outputs.

        Args:
            results (dict): The batched results from the model containing 'motion', 'pred_motion', etc.

        Returns:
            list: A list of dictionaries where each dictionary contains results for a single instance.
        """
        B = results['motion'].shape[0]
        output = []
        for i in range(B):
            batch_output = dict()
            batch_output['motion'] = to_cpu(results['motion'][i])
            batch_output['pred_motion'] = to_cpu(results['pred_motion'][i])
            batch_output['motion_length'] = to_cpu(results['motion_length'][i])
            batch_output['motion'][batch_output['motion_length']:, :] = 0
            batch_output['motion_mask'] = to_cpu(results['motion_mask'][i])
            if 'pred_motion_length' in results:
                batch_output['pred_motion_length'] = to_cpu(results['pred_motion_length'][i])
            else:
                batch_output['pred_motion_length'] = to_cpu(results['motion_length'][i])
            batch_output['pred_motion'][batch_output['pred_motion_length']:, :] = 0
            if 'pred_motion_mask' in results:
                batch_output['pred_motion_mask'] = to_cpu(results['pred_motion_mask'][i])
            else:
                batch_output['pred_motion_mask'] = to_cpu(results['motion_mask'][i])
            if 'motion_metas' in results:
                motion_metas = results['motion_metas'][i]
                if 'text' in motion_metas:
                    batch_output['text'] = motion_metas['text']
                if 'token' in motion_metas:
                    batch_output['token'] = motion_metas['token']
                if 'meta_data' in motion_metas and 'category_id' in motion_metas['meta_data']:
                    batch_output['category_id'] = motion_metas['meta_data']['category_id']
                batch_output['motion_metas'] = motion_metas
            output.append(batch_output)
        return output