Spaces:
Running
Running
File size: 26,010 Bytes
7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 c04ffe5 7647e70 836388f c04ffe5 7647e70 836388f 7647e70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
import os
import io
import cv2
import numpy as np
import tempfile
import time
import math
import json
from PIL import Image, ImageEnhance, ImageFilter
from pdf2image import convert_from_bytes
import streamlit as st
import logging
import concurrent.futures
from pathlib import Path
# Configure logging
logger = logging.getLogger("preprocessing")
logger.setLevel(logging.INFO)
# Ensure logs directory exists
def ensure_log_directory(config):
"""Create logs directory if it doesn't exist"""
if config.get("logging", {}).get("enabled", False):
log_path = config.get("logging", {}).get("output_path", "logs/preprocessing_metrics.json")
log_dir = os.path.dirname(log_path)
if log_dir:
Path(log_dir).mkdir(parents=True, exist_ok=True)
def log_preprocessing_metrics(metrics, config):
"""Log preprocessing metrics to JSON file"""
if not config.get("enabled", False):
return
log_path = config.get("output_path", "logs/preprocessing_metrics.json")
ensure_log_directory({"logging": {"enabled": True, "output_path": log_path}})
# Add timestamp
metrics["timestamp"] = time.strftime("%Y-%m-%d %H:%M:%S")
# Append to log file
try:
existing_data = []
if os.path.exists(log_path):
with open(log_path, 'r') as f:
existing_data = json.load(f)
if not isinstance(existing_data, list):
existing_data = [existing_data]
existing_data.append(metrics)
with open(log_path, 'w') as f:
json.dump(existing_data, f, indent=2)
logger.info(f"Logged preprocessing metrics to {log_path}")
except Exception as e:
logger.error(f"Error logging preprocessing metrics: {str(e)}")
def get_document_config(document_type, global_config):
"""
Get document-specific preprocessing configuration by merging with global settings.
Args:
document_type: The type of document (e.g., 'standard', 'newspaper', 'handwritten')
global_config: The global preprocessing configuration
Returns:
A merged configuration dictionary with document-specific overrides
"""
# Start with a copy of the global config
config = {
"deskew": global_config.get("deskew", {}),
"thresholding": global_config.get("thresholding", {}),
"morphology": global_config.get("morphology", {}),
"performance": global_config.get("performance", {}),
"logging": global_config.get("logging", {})
}
# Apply document-specific overrides if they exist
doc_types = global_config.get("document_types", {})
if document_type in doc_types:
doc_config = doc_types[document_type]
# Merge document-specific settings into the config
for section in doc_config:
if section in config:
config[section].update(doc_config[section])
return config
def deskew_image(img_array, config):
"""
Detect and correct skew in document images.
Uses a combination of methods (minAreaRect and/or Hough transform)
to estimate the skew angle more robustly.
Args:
img_array: Input image as numpy array
config: Deskew configuration dict
Returns:
Deskewed image as numpy array, estimated angle, success flag
"""
if not config.get("enabled", False):
return img_array, 0.0, True
# Convert to grayscale if needed
gray = img_array if len(img_array.shape) == 2 else cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
# Start with a threshold to get binary image for angle detection
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
angles = []
angle_threshold = config.get("angle_threshold", 0.1)
max_angle = config.get("max_angle", 45.0)
# Method 1: minAreaRect approach
try:
# Find all contours
contours, _ = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# Filter contours by area to avoid noise
min_area = binary.shape[0] * binary.shape[1] * 0.0001 # 0.01% of image area
filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > min_area]
# Get angles from rotated rectangles around contours
for contour in filtered_contours:
rect = cv2.minAreaRect(contour)
width, height = rect[1]
# Calculate the angle based on the longer side
# (This is important for getting the orientation right)
angle = rect[2]
if width < height:
angle += 90
# Normalize angle to -45 to 45 range
if angle > 45:
angle -= 90
if angle < -45:
angle += 90
# Clamp angle to max limit
angle = max(min(angle, max_angle), -max_angle)
angles.append(angle)
except Exception as e:
logger.error(f"Error in minAreaRect skew detection: {str(e)}")
# Method 2: Hough Transform approach (if enabled)
if config.get("use_hough", True):
try:
# Apply Canny edge detection
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
# Apply Hough lines
lines = cv2.HoughLinesP(edges, 1, np.pi/180,
threshold=100, minLineLength=100, maxLineGap=10)
if lines is not None:
for line in lines:
x1, y1, x2, y2 = line[0]
if x2 - x1 != 0: # Avoid division by zero
# Calculate line angle in degrees
angle = math.atan2(y2 - y1, x2 - x1) * 180.0 / np.pi
# Normalize angle to -45 to 45 range
if angle > 45:
angle -= 90
if angle < -45:
angle += 90
# Clamp angle to max limit
angle = max(min(angle, max_angle), -max_angle)
angles.append(angle)
except Exception as e:
logger.error(f"Error in Hough transform skew detection: {str(e)}")
# If no angles were detected, return original image
if not angles:
logger.warning("No skew angles detected, using original image")
return img_array, 0.0, False
# Combine angles using the specified consensus method
consensus_method = config.get("consensus_method", "average")
if consensus_method == "average":
final_angle = sum(angles) / len(angles)
elif consensus_method == "median":
final_angle = sorted(angles)[len(angles) // 2]
elif consensus_method == "min":
final_angle = min(angles, key=abs)
elif consensus_method == "max":
final_angle = max(angles, key=abs)
else:
final_angle = sum(angles) / len(angles) # Default to average
# If angle is below threshold, don't rotate
if abs(final_angle) < angle_threshold:
logger.info(f"Detected angle ({final_angle:.2f}°) is below threshold, skipping deskew")
return img_array, final_angle, True
# Log the detected angle
logger.info(f"Deskewing image with angle: {final_angle:.2f}°")
# Get image dimensions
h, w = img_array.shape[:2]
center = (w // 2, h // 2)
# Get rotation matrix
rotation_matrix = cv2.getRotationMatrix2D(center, final_angle, 1.0)
# Calculate new image dimensions
abs_cos = abs(rotation_matrix[0, 0])
abs_sin = abs(rotation_matrix[0, 1])
new_w = int(h * abs_sin + w * abs_cos)
new_h = int(h * abs_cos + w * abs_sin)
# Adjust the rotation matrix to account for new dimensions
rotation_matrix[0, 2] += (new_w / 2) - center[0]
rotation_matrix[1, 2] += (new_h / 2) - center[1]
# Perform the rotation
try:
# Determine the number of channels to create the correct output array
if len(img_array.shape) == 3:
rotated = cv2.warpAffine(img_array, rotation_matrix, (new_w, new_h),
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,
borderValue=(255, 255, 255))
else:
rotated = cv2.warpAffine(img_array, rotation_matrix, (new_w, new_h),
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,
borderValue=255)
return rotated, final_angle, True
except Exception as e:
logger.error(f"Error rotating image: {str(e)}")
if config.get("fallback", {}).get("enabled", True):
logger.info("Using original image as fallback after rotation failure")
return img_array, final_angle, False
return img_array, final_angle, False
def preblur(img_array, config):
"""
Apply pre-filtering blur to stabilize thresholding results.
Args:
img_array: Input image as numpy array
config: Pre-blur configuration dict
Returns:
Blurred image as numpy array
"""
if not config.get("enabled", False):
return img_array
method = config.get("method", "gaussian")
kernel_size = config.get("kernel_size", 3)
# Ensure kernel size is odd
if kernel_size % 2 == 0:
kernel_size += 1
try:
if method == "gaussian":
return cv2.GaussianBlur(img_array, (kernel_size, kernel_size), 0)
elif method == "median":
return cv2.medianBlur(img_array, kernel_size)
else:
logger.warning(f"Unknown blur method: {method}, using gaussian")
return cv2.GaussianBlur(img_array, (kernel_size, kernel_size), 0)
except Exception as e:
logger.error(f"Error applying {method} blur: {str(e)}")
return img_array
def apply_threshold(img_array, config):
"""
Apply thresholding to create binary image.
Supports Otsu's method and adaptive thresholding.
Includes pre-filtering and fallback mechanisms.
Args:
img_array: Input image as numpy array
config: Thresholding configuration dict
Returns:
Binary image as numpy array, success flag
"""
method = config.get("method", "adaptive")
if method == "none":
return img_array, True
# Convert to grayscale if needed
gray = img_array if len(img_array.shape) == 2 else cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
# Apply pre-blur if configured
preblur_config = config.get("preblur", {})
if preblur_config.get("enabled", False):
gray = preblur(gray, preblur_config)
binary = None
try:
if method == "otsu":
# Apply Otsu's thresholding
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
elif method == "adaptive":
# Apply adaptive thresholding
block_size = config.get("adaptive_block_size", 11)
constant = config.get("adaptive_constant", 2)
# Ensure block size is odd
if block_size % 2 == 0:
block_size += 1
binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, block_size, constant)
else:
logger.warning(f"Unknown thresholding method: {method}, using adaptive")
block_size = config.get("adaptive_block_size", 11)
constant = config.get("adaptive_constant", 2)
# Ensure block size is odd
if block_size % 2 == 0:
block_size += 1
binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, block_size, constant)
except Exception as e:
logger.error(f"Error applying {method} thresholding: {str(e)}")
if config.get("fallback", {}).get("enabled", True):
logger.info("Using original grayscale image as fallback after thresholding failure")
return gray, False
return gray, False
# Calculate percentage of non-zero pixels for logging
nonzero_pct = np.count_nonzero(binary) / binary.size * 100
logger.info(f"Binary image has {nonzero_pct:.2f}% non-zero pixels")
# Check if thresholding was successful (crude check)
if nonzero_pct < 1 or nonzero_pct > 99:
logger.warning(f"Thresholding produced extreme result ({nonzero_pct:.2f}% non-zero)")
if config.get("fallback", {}).get("enabled", True):
logger.info("Using original grayscale image as fallback after poor thresholding")
return gray, False
return binary, True
def apply_morphology(binary_img, config):
"""
Apply morphological operations to clean up binary image.
Supports opening, closing, or both operations.
Args:
binary_img: Binary image as numpy array
config: Morphology configuration dict
Returns:
Processed binary image as numpy array
"""
if not config.get("enabled", False):
return binary_img
operation = config.get("operation", "close")
kernel_size = config.get("kernel_size", 1)
kernel_shape = config.get("kernel_shape", "rect")
# Create appropriate kernel
if kernel_shape == "rect":
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size*2+1, kernel_size*2+1))
elif kernel_shape == "ellipse":
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size*2+1, kernel_size*2+1))
elif kernel_shape == "cross":
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (kernel_size*2+1, kernel_size*2+1))
else:
logger.warning(f"Unknown kernel shape: {kernel_shape}, using rect")
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size*2+1, kernel_size*2+1))
result = binary_img
try:
if operation == "open":
# Opening: Erosion followed by dilation - removes small noise
result = cv2.morphologyEx(binary_img, cv2.MORPH_OPEN, kernel)
elif operation == "close":
# Closing: Dilation followed by erosion - fills small holes
result = cv2.morphologyEx(binary_img, cv2.MORPH_CLOSE, kernel)
elif operation == "both":
# Both operations in sequence
result = cv2.morphologyEx(binary_img, cv2.MORPH_OPEN, kernel)
result = cv2.morphologyEx(result, cv2.MORPH_CLOSE, kernel)
else:
logger.warning(f"Unknown morphological operation: {operation}, using close")
result = cv2.morphologyEx(binary_img, cv2.MORPH_CLOSE, kernel)
except Exception as e:
logger.error(f"Error applying morphological operation: {str(e)}")
return binary_img
return result
@st.cache_data(ttl=24*3600, show_spinner=False) # Cache for 24 hours
def convert_pdf_to_images(pdf_bytes, dpi=150, rotation=0):
"""Convert PDF bytes to a list of images with caching"""
try:
images = convert_from_bytes(pdf_bytes, dpi=dpi)
# Apply rotation if specified
if rotation != 0 and images:
rotated_images = []
for img in images:
rotated_img = img.rotate(rotation, expand=True, resample=Image.BICUBIC)
rotated_images.append(rotated_img)
return rotated_images
return images
except Exception as e:
st.error(f"Error converting PDF: {str(e)}")
logger.error(f"PDF conversion error: {str(e)}")
return []
@st.cache_data(ttl=24*3600, show_spinner=False, hash_funcs={dict: lambda x: str(sorted(x.items()))})
def preprocess_image(image_bytes, preprocessing_options):
"""
Conservative preprocessing function for handwritten documents with early exit for clean scans.
Implements light processing: grayscale → denoise (gently) → contrast (conservative)
Args:
image_bytes: Image content as bytes
preprocessing_options: Dictionary with document_type, grayscale, denoise, contrast options
Returns:
Processed image bytes or original image bytes if no processing needed
"""
# Setup basic console logging
logger = logging.getLogger("image_preprocessor")
logger.setLevel(logging.INFO)
# Log which preprocessing options are being applied
logger.info(f"Document type: {preprocessing_options.get('document_type', 'standard')}")
# Check if any preprocessing is actually requested
has_preprocessing = (
preprocessing_options.get("grayscale", False) or
preprocessing_options.get("denoise", False) or
preprocessing_options.get("contrast", 0) != 0
)
# Convert bytes to PIL Image
image = Image.open(io.BytesIO(image_bytes))
# Check for minimal skew and exit early if document is already straight
# This avoids unnecessary processing for clean scans
try:
from utils.image_utils import detect_skew
skew_angle = detect_skew(image)
if abs(skew_angle) < 0.5:
logger.info(f"Document has minimal skew ({skew_angle:.2f}°), skipping preprocessing")
# Return original image bytes as is for perfectly straight documents
if not has_preprocessing:
return image_bytes
except Exception as e:
logger.warning(f"Error in skew detection: {str(e)}, continuing with preprocessing")
# If no preprocessing options are selected, return the original image
if not has_preprocessing:
logger.info("No preprocessing options selected, skipping preprocessing")
return image_bytes
# Initialize metrics for logging
metrics = {
"file": preprocessing_options.get("filename", "unknown"),
"document_type": preprocessing_options.get("document_type", "standard"),
"preprocessing_applied": []
}
start_time = time.time()
# Handle RGBA images (transparency) by converting to RGB
if image.mode == 'RGBA':
# Convert RGBA to RGB by compositing onto white background
logger.info("Converting RGBA image to RGB")
background = Image.new('RGB', image.size, (255, 255, 255))
background.paste(image, mask=image.split()[3]) # 3 is the alpha channel
image = background
metrics["preprocessing_applied"].append("alpha_conversion")
elif image.mode not in ('RGB', 'L'):
# Convert other modes to RGB
logger.info(f"Converting {image.mode} image to RGB")
image = image.convert('RGB')
metrics["preprocessing_applied"].append("format_conversion")
# Convert to NumPy array for OpenCV processing
img_array = np.array(image)
# Apply grayscale if requested (useful for handwritten text)
if preprocessing_options.get("grayscale", False):
if len(img_array.shape) == 3: # Only convert if it's not already grayscale
# For handwritten documents, apply gentle CLAHE to enhance contrast locally
if preprocessing_options.get("document_type") == "handwritten":
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
clahe = cv2.createCLAHE(clipLimit=1.5, tileGridSize=(8,8)) # Conservative clip limit
img_array = clahe.apply(img_array)
else:
# Standard grayscale for printed documents
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
metrics["preprocessing_applied"].append("grayscale")
# Apply light denoising if requested
if preprocessing_options.get("denoise", False):
try:
# Apply very gentle denoising
is_color = len(img_array.shape) == 3 and img_array.shape[2] == 3
if is_color:
# Very light color denoising with conservative parameters
img_array = cv2.fastNlMeansDenoisingColored(img_array, None, 2, 2, 3, 7)
else:
# Very light grayscale denoising
img_array = cv2.fastNlMeansDenoising(img_array, None, 2, 3, 7)
metrics["preprocessing_applied"].append("light_denoise")
except Exception as e:
logger.error(f"Denoising error: {str(e)}")
# Apply contrast adjustment if requested (conservative range)
contrast_value = preprocessing_options.get("contrast", 0)
if contrast_value != 0:
# Use a gentler contrast adjustment factor
contrast_factor = 1 + (contrast_value / 200) # Conservative scaling factor
# Convert NumPy array back to PIL Image for contrast adjustment
if len(img_array.shape) == 2: # If grayscale, convert to RGB for PIL
image = Image.fromarray(cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB))
else:
image = Image.fromarray(img_array)
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(contrast_factor)
# Convert back to NumPy array
img_array = np.array(image)
metrics["preprocessing_applied"].append(f"contrast_{contrast_value}")
# Convert back to PIL Image
if len(img_array.shape) == 2: # If grayscale, convert to RGB for saving
processed_image = Image.fromarray(cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB))
else:
processed_image = Image.fromarray(img_array)
# Record total processing time
metrics["processing_time"] = (time.time() - start_time) * 1000 # ms
# Higher quality for OCR processing
byte_io = io.BytesIO()
try:
# Make sure the image is in RGB mode before saving as JPEG
if processed_image.mode not in ('RGB', 'L'):
processed_image = processed_image.convert('RGB')
processed_image.save(byte_io, format='JPEG', quality=92, optimize=True)
byte_io.seek(0)
logger.info(f"Preprocessing complete. Original image mode: {image.mode}, processed mode: {processed_image.mode}")
logger.info(f"Original size: {len(image_bytes)/1024:.1f}KB, processed size: {len(byte_io.getvalue())/1024:.1f}KB")
logger.info(f"Applied preprocessing steps: {', '.join(metrics['preprocessing_applied'])}")
return byte_io.getvalue()
except Exception as e:
logger.error(f"Error saving processed image: {str(e)}")
# Fallback to original image
logger.info("Using original image as fallback")
return image_bytes
def create_temp_file(content, suffix, temp_file_paths):
"""Create a temporary file and track it for cleanup"""
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
tmp.write(content)
temp_path = tmp.name
# Track temporary file for cleanup
temp_file_paths.append(temp_path)
logger.info(f"Created temporary file: {temp_path}")
return temp_path
def apply_preprocessing_to_file(file_bytes, file_ext, preprocessing_options, temp_file_paths):
"""
Apply conservative preprocessing to file and return path to the temporary file.
Handles format conversion and user-selected preprocessing options.
Args:
file_bytes: File content as bytes
file_ext: File extension (e.g., '.jpg', '.pdf')
preprocessing_options: Dictionary with document_type and preprocessing options
temp_file_paths: List to track temporary files for cleanup
Returns:
Tuple of (temp_file_path, was_processed_flag)
"""
document_type = preprocessing_options.get("document_type", "standard")
# Check for user-selected preprocessing
has_preprocessing = (
preprocessing_options.get("grayscale", False) or
preprocessing_options.get("denoise", False) or
preprocessing_options.get("contrast", 0) != 0
)
# Check for RGBA/transparency that needs conversion
format_needs_conversion = False
# Only check formats that might have transparency
if file_ext.lower() in ['.png', '.tif', '.tiff']:
try:
# Check if image has transparency
image = Image.open(io.BytesIO(file_bytes))
if image.mode == 'RGBA' or image.mode not in ('RGB', 'L'):
format_needs_conversion = True
except Exception as e:
logger.warning(f"Error checking image format: {str(e)}")
# Process if user requested preprocessing OR format needs conversion
needs_processing = has_preprocessing or format_needs_conversion
if needs_processing:
# Apply preprocessing
logger.info(f"Applying preprocessing with options: {preprocessing_options}")
logger.info(f"Using document type '{document_type}' with advanced preprocessing options")
# Add filename to preprocessing options for logging if available
if hasattr(file_bytes, 'name'):
preprocessing_options["filename"] = file_bytes.name
processed_bytes = preprocess_image(file_bytes, preprocessing_options)
# Save processed image to temp file
temp_path = create_temp_file(processed_bytes, file_ext, temp_file_paths)
return temp_path, True # Return path and flag indicating preprocessing was applied
else:
# No preprocessing needed, just save the original file
logger.info("No preprocessing applied - using original image")
temp_path = create_temp_file(file_bytes, file_ext, temp_file_paths)
return temp_path, False # Return path and flag indicating no preprocessing was applied
|