Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
import json
|
4 |
+
import langdetect
|
5 |
+
from keybert import KeyBERT
|
6 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
7 |
+
|
8 |
+
# Load Pretrained Models
|
9 |
+
@st.cache_resource
|
10 |
+
def load_models():
|
11 |
+
return {
|
12 |
+
"emotion": pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True),
|
13 |
+
"sentiment": pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment"),
|
14 |
+
"summarization": pipeline("summarization", model="facebook/bart-large-cnn"),
|
15 |
+
"ner": pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", grouped_entities=True),
|
16 |
+
"toxicity": pipeline("text-classification", model="unitary/unbiased-toxic-roberta"),
|
17 |
+
"keyword_extraction": KeyBERT()
|
18 |
+
}
|
19 |
+
|
20 |
+
models = load_models()
|
21 |
+
|
22 |
+
# Function: Emotion Detection
|
23 |
+
def analyze_emotions(text):
|
24 |
+
results = models["emotion"](text)
|
25 |
+
return {r['label']: round(r['score'], 2) for r in results[0]}
|
26 |
+
|
27 |
+
# Function: Sentiment Analysis
|
28 |
+
def analyze_sentiment(text):
|
29 |
+
result = models["sentiment"](text)[0]
|
30 |
+
return {result['label']: round(result['score'], 2)}
|
31 |
+
|
32 |
+
# Function: Text Summarization
|
33 |
+
def summarize_text(text):
|
34 |
+
return models["summarization"](text[:1024])[0]['summary_text']
|
35 |
+
|
36 |
+
# Function: Keyword Extraction
|
37 |
+
def extract_keywords(text):
|
38 |
+
vectorizer = CountVectorizer(ngram_range=(1, 2))
|
39 |
+
return models["keyword_extraction"].extract_keywords(text, vectorizer=vectorizer, stop_words='english')
|
40 |
+
|
41 |
+
# Function: Named Entity Recognition (NER)
|
42 |
+
def analyze_ner(text):
|
43 |
+
entities = models["ner"](text)
|
44 |
+
return {entity["word"]: entity["entity_group"] for entity in entities}
|
45 |
+
|
46 |
+
# Function: Language Detection
|
47 |
+
def detect_language(text):
|
48 |
+
try:
|
49 |
+
return langdetect.detect(text)
|
50 |
+
except:
|
51 |
+
return "Error detecting language"
|
52 |
+
|
53 |
+
# Function: Toxicity Detection
|
54 |
+
def detect_toxicity(text):
|
55 |
+
results = models["toxicity"](text)
|
56 |
+
return {results[0]['label']: round(results[0]['score'], 2)}
|
57 |
+
|
58 |
+
# Streamlit UI
|
59 |
+
st.title("๐ AI-Powered Text Intelligence App")
|
60 |
+
st.markdown("Analyze text with multiple NLP features: Emotion Detection, Sentiment Analysis, Summarization, NER, Keywords, Language Detection, and more!")
|
61 |
+
|
62 |
+
# User Input
|
63 |
+
text_input = st.text_area("Enter text to analyze:", "")
|
64 |
+
|
65 |
+
if st.button("Analyze Text"):
|
66 |
+
if text_input.strip():
|
67 |
+
st.subheader("๐น Emotion Detection")
|
68 |
+
st.json(analyze_emotions(text_input))
|
69 |
+
|
70 |
+
st.subheader("๐น Sentiment Analysis")
|
71 |
+
st.json(analyze_sentiment(text_input))
|
72 |
+
|
73 |
+
st.subheader("๐น Text Summarization")
|
74 |
+
st.write(summarize_text(text_input))
|
75 |
+
|
76 |
+
st.subheader("๐น Keyword Extraction")
|
77 |
+
st.json(extract_keywords(text_input))
|
78 |
+
|
79 |
+
st.subheader("๐น Named Entity Recognition (NER)")
|
80 |
+
st.json(analyze_ner(text_input))
|
81 |
+
|
82 |
+
st.subheader("๐น Language Detection")
|
83 |
+
st.write(f"Detected Language: `{detect_language(text_input)}`")
|
84 |
+
|
85 |
+
st.subheader("๐น Toxicity Detection")
|
86 |
+
st.json(detect_toxicity(text_input))
|
87 |
+
|
88 |
+
# Save results to JSON
|
89 |
+
results = {
|
90 |
+
"emotion": analyze_emotions(text_input),
|
91 |
+
"sentiment": analyze_sentiment(text_input),
|
92 |
+
"summary": summarize_text(text_input),
|
93 |
+
"keywords": extract_keywords(text_input),
|
94 |
+
"ner": analyze_ner(text_input),
|
95 |
+
"language": detect_language(text_input),
|
96 |
+
"toxicity": detect_toxicity(text_input)
|
97 |
+
}
|
98 |
+
st.download_button("Download JSON Report", json.dumps(results, indent=2), "text_analysis.json", "application/json")
|
99 |
+
else:
|
100 |
+
st.warning("โ ๏ธ Please enter some text to analyze.")
|