Spaces:
Build error
Build error
# import gradio as gr | |
# from transformers import AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig | |
# import torch | |
# # Set device to CPU since GPU quantization is unavailable | |
# device = 'cpu' | |
# # Set up 8-bit quantization with BitsAndBytesConfig | |
# quantization_config = BitsAndBytesConfig( | |
# load_in_8bit=True, # Enable 8-bit quantization | |
# llm_int8_enable_fp32_cpu_offload=True # Use CPU for 8-bit quantization operations | |
# ) | |
# # Load the model with quantization configuration | |
# model_name = "Rahmat82/DistilBERT-finetuned-on-emotion" | |
# model = AutoModelForSequenceClassification.from_pretrained( | |
# model_name, | |
# quantization_config=quantization_config, | |
# device_map={"": device} # Ensures everything runs on CPU | |
# ) | |
# tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) | |
# def predict(query: str) -> dict: | |
# inputs = tokenizer(query, return_tensors='pt') | |
# inputs = {k: v.to(device) for k, v in inputs.items()} # Ensure inputs are on CPU | |
# outputs = model(**inputs) | |
# outputs = torch.sigmoid(outputs.logits) | |
# outputs = outputs.detach().cpu().numpy() | |
# # Define label to ID mapping | |
# label2ids = { | |
# "sadness": 0, | |
# "joy": 1, | |
# "love": 2, | |
# "anger": 3, | |
# "fear": 4, | |
# "surprise": 5, | |
# } | |
# for i, k in enumerate(label2ids.keys()): | |
# label2ids[k] = outputs[0][i] | |
# label2ids = {k: float(v) for k, v in sorted(label2ids.items(), key=lambda item: item[1], reverse=True)} | |
# return label2ids | |
# # Gradio interface setup | |
# demo = gr.Interface( | |
# theme=gr.themes.Soft(), | |
# title="RHM Emotion Classifier π", | |
# description="Beyond Words: Capturing the Essence of Emotion in Text<h3>On CPU with 8-bit quantization</h3>", | |
# fn=predict, | |
# inputs=gr.components.Textbox(label='Write your text here', lines=3), | |
# outputs=gr.components.Label(label='Predictions', num_top_classes=6), | |
# allow_flagging='never', | |
# examples=[ | |
# ["The gentle touch of your hand on mine is a silent promise that echoes through the corridors of my heart."], | |
# ["The rain mirrored the tears I couldn't stop, each drop a tiny echo of the ache in my heart. The world seemed muted, colors drained, and a heavy weight settled upon my soul."], | |
# ["Walking through the dusty attic, I stumbled upon a hidden door. With a mix of trepidation and excitement, I pushed it open, expecting cobwebs and forgotten junk. Instead, a flood of sunlight revealed a secret garden, blooming with vibrant flowers and buzzing with life. My jaw dropped in pure astonishment."], | |
# ] | |
# ) | |
# demo.launch(share=True) | |
import gradio as gr | |
from transformers import pipeline, AutoTokenizer | |
from optimum.onnxruntime import ORTModelForSequenceClassification | |
import torch | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model_name = "Rahmat82/DistilBERT-finetuned-on-emotion" | |
model = ORTModelForSequenceClassification.from_pretrained(model_name, export=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) | |
model.to(device) | |
def predict(query: str) -> dict: | |
inputs = tokenizer(query, return_tensors='pt') | |
inputs.to(device) | |
outputs = model(**inputs) | |
outputs = torch.sigmoid(outputs.logits) | |
outputs = outputs.detach().cpu().numpy() | |
label2ids = { | |
"sadness": 0, | |
"joy": 1, | |
"love": 2, | |
"anger": 3, | |
"fear": 4, | |
"surprise": 5, | |
} | |
for i, k in enumerate(label2ids.keys()): | |
label2ids[k] = outputs[0][i] | |
label2ids = {k: float(v) for k, v in sorted(label2ids.items(), key=lambda item: item[1], reverse=True)} | |
return label2ids | |
demo = gr.Interface( | |
theme = gr.themes.Soft(), | |
title = "RHM Emotion Classifier π", | |
description = "Beyond Words: Capturing the Essence of Emotion in Text<h3>On GPU it is much faster π</h3>", | |
fn = predict, | |
inputs = gr.components.Textbox(label='Write your text here', lines=3), | |
outputs = gr.components.Label(label='Predictions', num_top_classes=6), | |
allow_flagging = 'never', | |
examples = [ | |
["The gentle touch of your hand on mine is a silent promise that echoes through the corridors of my heart."], | |
["The rain mirrored the tears I couldn't stop, each drop a tiny echo of the ache in my heart. The world seemed muted, colors drained, and a heavy weight settled upon my soul."], | |
["Walking through the dusty attic, I stumbled upon a hidden door. With a mix of trepidation and excitement, I pushed it open, expecting cobwebs and forgotten junk. Instead, a flood of sunlight revealed a secret garden, blooming with vibrant flowers and buzzing with life. My jaw dropped in pure astonishment."], | |
] | |
) | |
demo.launch(share=True) |