Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
unicorn_image_path = "unicorn.png"
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
from transformers import (
|
11 |
+
DistilBertTokenizerFast,
|
12 |
+
DistilBertForSequenceClassification,
|
13 |
+
AutoTokenizer,
|
14 |
+
AutoModelForSequenceClassification,
|
15 |
+
)
|
16 |
+
from huggingface_hub import hf_hub_download
|
17 |
+
import torch
|
18 |
+
import pickle
|
19 |
+
import numpy as np
|
20 |
+
from tensorflow.keras.models import load_model
|
21 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
22 |
+
import re
|
23 |
+
|
24 |
+
gru_repo_id = "arjahojnik/GRU-sentiment-model"
|
25 |
+
gru_model_path = hf_hub_download(repo_id=gru_repo_id, filename="best_GRU_tuning_model.h5")
|
26 |
+
gru_model = load_model(gru_model_path)
|
27 |
+
gru_tokenizer_path = hf_hub_download(repo_id=gru_repo_id, filename="my_tokenizer.pkl")
|
28 |
+
with open(gru_tokenizer_path, "rb") as f:
|
29 |
+
gru_tokenizer = pickle.load(f)
|
30 |
+
|
31 |
+
lstm_repo_id = "arjahojnik/LSTM-sentiment-model"
|
32 |
+
lstm_model_path = hf_hub_download(repo_id=lstm_repo_id, filename="LSTM_model.h5")
|
33 |
+
lstm_model = load_model(lstm_model_path)
|
34 |
+
lstm_tokenizer_path = hf_hub_download(repo_id=lstm_repo_id, filename="my_tokenizer.pkl")
|
35 |
+
with open(lstm_tokenizer_path, "rb") as f:
|
36 |
+
lstm_tokenizer = pickle.load(f)
|
37 |
+
|
38 |
+
bilstm_repo_id = "arjahojnik/BiLSTM-sentiment-model"
|
39 |
+
bilstm_model_path = hf_hub_download(repo_id=bilstm_repo_id, filename="BiLSTM_model.h5")
|
40 |
+
bilstm_model = load_model(bilstm_model_path)
|
41 |
+
bilstm_tokenizer_path = hf_hub_download(repo_id=bilstm_repo_id, filename="my_tokenizer.pkl")
|
42 |
+
with open(bilstm_tokenizer_path, "rb") as f:
|
43 |
+
bilstm_tokenizer = pickle.load(f)
|
44 |
+
|
45 |
+
def preprocess_text(text):
|
46 |
+
text = text.lower()
|
47 |
+
text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
|
48 |
+
return text
|
49 |
+
|
50 |
+
def predict_with_gru(text):
|
51 |
+
cleaned = preprocess_text(text)
|
52 |
+
seq = gru_tokenizer.texts_to_sequences([cleaned])
|
53 |
+
padded_seq = pad_sequences(seq, maxlen=200)
|
54 |
+
probs = gru_model.predict(padded_seq)
|
55 |
+
predicted_class = np.argmax(probs, axis=1)[0]
|
56 |
+
return int(predicted_class + 1)
|
57 |
+
|
58 |
+
def predict_with_lstm(text):
|
59 |
+
cleaned = preprocess_text(text)
|
60 |
+
seq = lstm_tokenizer.texts_to_sequences([cleaned])
|
61 |
+
padded_seq = pad_sequences(seq, maxlen=200)
|
62 |
+
probs = lstm_model.predict(padded_seq)
|
63 |
+
predicted_class = np.argmax(probs, axis=1)[0]
|
64 |
+
return int(predicted_class + 1)
|
65 |
+
|
66 |
+
def predict_with_bilstm(text):
|
67 |
+
cleaned = preprocess_text(text)
|
68 |
+
seq = bilstm_tokenizer.texts_to_sequences([cleaned])
|
69 |
+
padded_seq = pad_sequences(seq, maxlen=200)
|
70 |
+
probs = bilstm_model.predict(padded_seq)
|
71 |
+
predicted_class = np.argmax(probs, axis=1)[0]
|
72 |
+
return int(predicted_class + 1)
|
73 |
+
|
74 |
+
models = {
|
75 |
+
"DistilBERT": {
|
76 |
+
"tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"),
|
77 |
+
"model": DistilBertForSequenceClassification.from_pretrained("nhull/distilbert-sentiment-model"),
|
78 |
+
},
|
79 |
+
"Logistic Regression": {},
|
80 |
+
"BERT Multilingual (NLP Town)": {
|
81 |
+
"tokenizer": AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
|
82 |
+
"model": AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
|
83 |
+
},
|
84 |
+
"TinyBERT": {
|
85 |
+
"tokenizer": AutoTokenizer.from_pretrained("elo4/TinyBERT-sentiment-model"),
|
86 |
+
"model": AutoModelForSequenceClassification.from_pretrained("elo4/TinyBERT-sentiment-model"),
|
87 |
+
},
|
88 |
+
"RoBERTa": {
|
89 |
+
"tokenizer": AutoTokenizer.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
|
90 |
+
"model": AutoModelForSequenceClassification.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
|
91 |
+
}
|
92 |
+
}
|
93 |
+
|
94 |
+
logistic_regression_repo = "nhull/logistic-regression-model"
|
95 |
+
log_reg_model_path = hf_hub_download(repo_id=logistic_regression_repo, filename="logistic_regression_model.pkl")
|
96 |
+
with open(log_reg_model_path, "rb") as model_file:
|
97 |
+
log_reg_model = pickle.load(model_file)
|
98 |
+
|
99 |
+
vectorizer_path = hf_hub_download(repo_id=logistic_regression_repo, filename="tfidf_vectorizer.pkl")
|
100 |
+
with open(vectorizer_path, "rb") as vectorizer_file:
|
101 |
+
vectorizer = pickle.load(vectorizer_file)
|
102 |
+
|
103 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
104 |
+
for model_data in models.values():
|
105 |
+
if "model" in model_data:
|
106 |
+
model_data["model"].to(device)
|
107 |
+
|
108 |
+
def predict_with_distilbert(text):
|
109 |
+
tokenizer = models["DistilBERT"]["tokenizer"]
|
110 |
+
model = models["DistilBERT"]["model"]
|
111 |
+
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
112 |
+
with torch.no_grad():
|
113 |
+
outputs = model(**encodings)
|
114 |
+
logits = outputs.logits
|
115 |
+
predictions = logits.argmax(axis=-1).cpu().numpy()
|
116 |
+
return int(predictions[0] + 1)
|
117 |
+
|
118 |
+
def predict_with_logistic_regression(text):
|
119 |
+
transformed_text = vectorizer.transform([text])
|
120 |
+
predictions = log_reg_model.predict(transformed_text)
|
121 |
+
return int(predictions[0])
|
122 |
+
|
123 |
+
def predict_with_bert_multilingual(text):
|
124 |
+
tokenizer = models["BERT Multilingual (NLP Town)"]["tokenizer"]
|
125 |
+
model = models["BERT Multilingual (NLP Town)"]["model"]
|
126 |
+
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
127 |
+
with torch.no_grad():
|
128 |
+
outputs = model(**encodings)
|
129 |
+
logits = outputs.logits
|
130 |
+
predictions = logits.argmax(axis=-1).cpu().numpy()
|
131 |
+
return int(predictions[0] + 1)
|
132 |
+
|
133 |
+
def predict_with_tinybert(text):
|
134 |
+
tokenizer = models["TinyBERT"]["tokenizer"]
|
135 |
+
model = models["TinyBERT"]["model"]
|
136 |
+
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
137 |
+
with torch.no_grad():
|
138 |
+
outputs = model(**encodings)
|
139 |
+
logits = outputs.logits
|
140 |
+
predictions = logits.argmax(axis=-1).cpu().numpy()
|
141 |
+
return int(predictions[0] + 1)
|
142 |
+
|
143 |
+
def predict_with_roberta_ordek899(text):
|
144 |
+
tokenizer = models["RoBERTa"]["tokenizer"]
|
145 |
+
model = models["RoBERTa"]["model"]
|
146 |
+
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
147 |
+
with torch.no_grad():
|
148 |
+
outputs = model(**encodings)
|
149 |
+
logits = outputs.logits
|
150 |
+
predictions = logits.argmax(axis=-1).cpu().numpy()
|
151 |
+
return int(predictions[0] + 1)
|
152 |
+
|
153 |
+
def analyze_sentiment_and_statistics(text):
|
154 |
+
results = {
|
155 |
+
"Logistic Regression": predict_with_logistic_regression(text),
|
156 |
+
"GRU Model": predict_with_gru(text),
|
157 |
+
"LSTM Model": predict_with_lstm(text),
|
158 |
+
"BiLSTM Model": predict_with_bilstm(text),
|
159 |
+
"DistilBERT": predict_with_distilbert(text),
|
160 |
+
"BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text),
|
161 |
+
"TinyBERT": predict_with_tinybert(text),
|
162 |
+
"RoBERTa": predict_with_roberta_ordek899(text),
|
163 |
+
}
|
164 |
+
scores = list(results.values())
|
165 |
+
min_score = min(scores)
|
166 |
+
max_score = max(scores)
|
167 |
+
min_score_models = [model for model, score in results.items() if score == min_score]
|
168 |
+
max_score_models = [model for model, score in results.items() if score == max_score]
|
169 |
+
average_score = np.mean(scores)
|
170 |
+
|
171 |
+
if all(score == scores[0] for score in scores):
|
172 |
+
statistics = {
|
173 |
+
"Message": "All models predict the same score.",
|
174 |
+
"Average Score": f"{average_score:.2f}",
|
175 |
+
}
|
176 |
+
else:
|
177 |
+
statistics = {
|
178 |
+
"Lowest Score": f"{min_score} (Models: {', '.join(min_score_models)})",
|
179 |
+
"Highest Score": f"{max_score} (Models: {', '.join(max_score_models)})",
|
180 |
+
"Average Score": f"{average_score:.2f}",
|
181 |
+
}
|
182 |
+
return results, statistics
|
183 |
+
|
184 |
+
with gr.Blocks(
|
185 |
+
css="""
|
186 |
+
.gradio-container {
|
187 |
+
max-width: 900px;
|
188 |
+
margin: auto;
|
189 |
+
padding: 20px;
|
190 |
+
}
|
191 |
+
h1 {
|
192 |
+
text-align: center;
|
193 |
+
font-size: 2.5rem;
|
194 |
+
}
|
195 |
+
.unicorn-image {
|
196 |
+
display: block;
|
197 |
+
margin: auto;
|
198 |
+
width: 300px; /* Larger size */
|
199 |
+
height: auto;
|
200 |
+
border-radius: 20px;
|
201 |
+
margin-bottom: 20px;
|
202 |
+
animation: magical-float 5s ease-in-out infinite; /* Gentle floating animation */
|
203 |
+
}
|
204 |
+
@keyframes magical-float {
|
205 |
+
0% {
|
206 |
+
transform: translate(0, 0) rotate(0deg); /* Start position */
|
207 |
+
}
|
208 |
+
25% {
|
209 |
+
transform: translate(10px, -10px) rotate(3deg); /* Slightly up and right, tilted */
|
210 |
+
}
|
211 |
+
50% {
|
212 |
+
transform: translate(0, -20px) rotate(0deg); /* Higher point, back to straight */
|
213 |
+
}
|
214 |
+
75% {
|
215 |
+
transform: translate(-10px, -10px) rotate(-3deg); /* Slightly up and left, tilted */
|
216 |
+
}
|
217 |
+
100% {
|
218 |
+
transform: translate(0, 0) rotate(0deg); /* Return to start position */
|
219 |
+
}
|
220 |
+
}
|
221 |
+
footer {
|
222 |
+
text-align: center;
|
223 |
+
margin-top: 20px;
|
224 |
+
font-size: 14px;
|
225 |
+
color: gray;
|
226 |
+
}
|
227 |
+
.custom-analyze-button {
|
228 |
+
background-color: #e8a4c9;
|
229 |
+
color: white;
|
230 |
+
font-size: 1rem;
|
231 |
+
padding: 10px 20px;
|
232 |
+
border-radius: 10px;
|
233 |
+
border: none;
|
234 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
235 |
+
transition: transform 0.2s, background-color 0.2s;
|
236 |
+
}
|
237 |
+
.custom-analyze-button:hover {
|
238 |
+
background-color: #d693b8;
|
239 |
+
transform: scale(1.05);
|
240 |
+
}
|
241 |
+
"""
|
242 |
+
) as demo:
|
243 |
+
gr.Image(
|
244 |
+
value=unicorn_image_path,
|
245 |
+
type="filepath",
|
246 |
+
elem_classes=["unicorn-image"]
|
247 |
+
)
|
248 |
+
|
249 |
+
|
250 |
+
gr.Markdown("# Sentiment Analysis Demo")
|
251 |
+
gr.Markdown(
|
252 |
+
"""
|
253 |
+
Welcome! A magical unicorn 🦄 will guide you through this sentiment analysis journey! 🎉
|
254 |
+
This app lets you explore how different models interpret sentiment and compare their predictions.
|
255 |
+
**Enjoy the magic!**
|
256 |
+
"""
|
257 |
+
)
|
258 |
+
|
259 |
+
with gr.Row():
|
260 |
+
with gr.Column():
|
261 |
+
text_input = gr.Textbox(
|
262 |
+
label="Enter your text here:",
|
263 |
+
lines=3,
|
264 |
+
placeholder="Type your hotel/restaurant review here..."
|
265 |
+
)
|
266 |
+
sample_reviews = [
|
267 |
+
"The hotel was fantastic! Clean rooms and excellent service.",
|
268 |
+
"The food was horrible, and the staff was rude.",
|
269 |
+
"Amazing experience overall. Highly recommend!",
|
270 |
+
"It was okay, not great but not terrible either.",
|
271 |
+
"Terrible! The room was dirty, and the service was non-existent."
|
272 |
+
]
|
273 |
+
sample_dropdown = gr.Dropdown(
|
274 |
+
choices=["Select an option"] + sample_reviews,
|
275 |
+
label="Or select a sample review:",
|
276 |
+
value=None,
|
277 |
+
interactive=True
|
278 |
+
)
|
279 |
+
|
280 |
+
def update_textbox(selected_sample):
|
281 |
+
if selected_sample == "Select an option":
|
282 |
+
return ""
|
283 |
+
return selected_sample
|
284 |
+
|
285 |
+
sample_dropdown.change(
|
286 |
+
update_textbox,
|
287 |
+
inputs=[sample_dropdown],
|
288 |
+
outputs=[text_input]
|
289 |
+
)
|
290 |
+
analyze_button = gr.Button("Analyze Sentiment", elem_classes=["custom-analyze-button"])
|
291 |
+
|
292 |
+
with gr.Row():
|
293 |
+
with gr.Column():
|
294 |
+
gr.Markdown("### Machine Learning")
|
295 |
+
log_reg_output = gr.Textbox(label="Logistic Regression", interactive=False)
|
296 |
+
|
297 |
+
with gr.Column():
|
298 |
+
gr.Markdown("### Deep Learning")
|
299 |
+
gru_output = gr.Textbox(label="GRU Model", interactive=False)
|
300 |
+
lstm_output = gr.Textbox(label="LSTM Model", interactive=False)
|
301 |
+
bilstm_output = gr.Textbox(label="BiLSTM Model", interactive=False)
|
302 |
+
|
303 |
+
with gr.Column():
|
304 |
+
gr.Markdown("### Transformers")
|
305 |
+
distilbert_output = gr.Textbox(label="DistilBERT", interactive=False)
|
306 |
+
bert_output = gr.Textbox(label="BERT Multilingual", interactive=False)
|
307 |
+
tinybert_output = gr.Textbox(label="TinyBERT", interactive=False)
|
308 |
+
roberta_output = gr.Textbox(label="RoBERTa", interactive=False)
|
309 |
+
|
310 |
+
with gr.Row():
|
311 |
+
with gr.Column():
|
312 |
+
gr.Markdown("### Feedback")
|
313 |
+
feedback_output = gr.Textbox(label="Feedback", interactive=False)
|
314 |
+
|
315 |
+
with gr.Row():
|
316 |
+
with gr.Column():
|
317 |
+
gr.Markdown("### Statistics")
|
318 |
+
stats_output = gr.Textbox(label="Statistics", interactive=False)
|
319 |
+
|
320 |
+
gr.Markdown(
|
321 |
+
"""
|
322 |
+
<footer>
|
323 |
+
This demo was built as a part of the NLP course at the University of Zagreb.
|
324 |
+
Check out our GitHub repository:
|
325 |
+
<a href="https://github.com/FFZG-NLP-2024/TripAdvisor-Sentiment/" target="_blank">TripAdvisor Sentiment Analysis</a>
|
326 |
+
or explore our HuggingFace collection:
|
327 |
+
<a href="https://huggingface.co/collections/nhull/nlp-zg-6794604b85fd4216e6470d38" target="_blank">NLP Zagreb HuggingFace Collection</a>.
|
328 |
+
</footer>
|
329 |
+
"""
|
330 |
+
)
|
331 |
+
|
332 |
+
def convert_to_stars(rating):
|
333 |
+
return "★" * rating + "☆" * (5 - rating)
|
334 |
+
|
335 |
+
def process_input_and_analyze(text_input):
|
336 |
+
if not text_input.strip():
|
337 |
+
funny_message = "Are you sure you wrote something? Try again! 🧐"
|
338 |
+
return (
|
339 |
+
"", "", "", "", "", "", "", "",
|
340 |
+
funny_message,
|
341 |
+
"No statistics can be shown."
|
342 |
+
)
|
343 |
+
|
344 |
+
if len(text_input.strip()) == 1 or text_input.strip().isdigit():
|
345 |
+
funny_message = "Why not write something that makes sense? 🤔"
|
346 |
+
return (
|
347 |
+
"", "", "", "", "", "", "", "",
|
348 |
+
funny_message,
|
349 |
+
"No statistics can be shown."
|
350 |
+
)
|
351 |
+
|
352 |
+
if len(text_input.split()) < 5:
|
353 |
+
results, statistics = analyze_sentiment_and_statistics(text_input)
|
354 |
+
short_message = "Maybe try with some longer text next time. 😉"
|
355 |
+
stats_text = (
|
356 |
+
f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\n"
|
357 |
+
f"Average Score: {statistics['Average Score']}"
|
358 |
+
if "Message" not in statistics else f"Statistics:\n{statistics['Message']}"
|
359 |
+
)
|
360 |
+
return (
|
361 |
+
convert_to_stars(results['Logistic Regression']),
|
362 |
+
convert_to_stars(results['GRU Model']),
|
363 |
+
convert_to_stars(results['LSTM Model']),
|
364 |
+
convert_to_stars(results['BiLSTM Model']),
|
365 |
+
convert_to_stars(results['DistilBERT']),
|
366 |
+
convert_to_stars(results['BERT Multilingual (NLP Town)']),
|
367 |
+
convert_to_stars(results['TinyBERT']),
|
368 |
+
convert_to_stars(results['RoBERTa']),
|
369 |
+
short_message,
|
370 |
+
stats_text
|
371 |
+
)
|
372 |
+
|
373 |
+
results, statistics = analyze_sentiment_and_statistics(text_input)
|
374 |
+
feedback_message = "Sentiment analysis completed successfully! 😊"
|
375 |
+
|
376 |
+
if "Message" in statistics:
|
377 |
+
stats_text = f"Statistics:\n{statistics['Message']}\nAverage Score: {statistics['Average Score']}"
|
378 |
+
else:
|
379 |
+
stats_text = f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}"
|
380 |
+
|
381 |
+
return (
|
382 |
+
convert_to_stars(results["Logistic Regression"]),
|
383 |
+
convert_to_stars(results["GRU Model"]),
|
384 |
+
convert_to_stars(results["LSTM Model"]),
|
385 |
+
convert_to_stars(results["BiLSTM Model"]),
|
386 |
+
convert_to_stars(results["DistilBERT"]),
|
387 |
+
convert_to_stars(results["BERT Multilingual (NLP Town)"]),
|
388 |
+
convert_to_stars(results["TinyBERT"]),
|
389 |
+
convert_to_stars(results["RoBERTa"]),
|
390 |
+
feedback_message,
|
391 |
+
stats_text
|
392 |
+
)
|
393 |
+
|
394 |
+
analyze_button.click(
|
395 |
+
process_input_and_analyze,
|
396 |
+
inputs=[text_input],
|
397 |
+
outputs=[
|
398 |
+
log_reg_output,
|
399 |
+
gru_output,
|
400 |
+
lstm_output,
|
401 |
+
bilstm_output,
|
402 |
+
distilbert_output,
|
403 |
+
bert_output,
|
404 |
+
tinybert_output,
|
405 |
+
roberta_output,
|
406 |
+
feedback_output,
|
407 |
+
stats_output
|
408 |
+
]
|
409 |
+
)
|
410 |
+
|
411 |
+
demo.launch()
|