mikonvergence commited on
Commit
e964e52
·
1 Parent(s): 77be5fe

2D view (faster)

Browse files
app.py CHANGED
@@ -3,37 +3,51 @@ from src.utils import *
3
 
4
  if __name__ == '__main__':
5
  theme = gr.themes.Soft(primary_hue="emerald", secondary_hue="stone", font=[gr.themes.GoogleFont("Source Sans 3", weights=(400, 600)),'arial'])
6
-
7
- with gr.Blocks(theme=theme) as demo:
8
- with gr.Column(elem_classes="header"):
9
- gr.Markdown("# 🏔 MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data")
10
- gr.Markdown("### Paul Borne–Pons, Mikolaj Czerkawski, Rosalie Martin, Romain Rouffet")
11
- gr.Markdown('[[Website](https://paulbornep.github.io/mesa-terrain/)] [[GitHub](https://github.com/PaulBorneP/MESA)] [[Model](https://huggingface.co/NewtNewt/MESA)] [[Dataset](https://huggingface.co/datasets/Major-TOM/Core-DEM)]')
12
-
13
- with gr.Column(elem_classes="abstract"):
14
- gr.Markdown("MESA is a novel generative model based on latent denoising diffusion capable of generating 2.5D representations of terrain based on the text prompt conditioning supplied via natural language. The model produces two co-registered modalities of optical and depth maps.") # Replace with your abstract text
15
- gr.Markdown("This is a test version of the demo app. Please be aware that MESA supports primarily complex, mountainous terrains as opposed to flat land")
16
- gr.Markdown("> ⚠️ **The generated image is quite large, so for the larger resolution (768) it might take a while to load the surface**")
17
-
18
  with gr.Row():
19
- prompt_input = gr.Textbox(lines=2, placeholder="Enter a terrain description...")
20
- generate_button = gr.Button("Generate Terrain", variant="primary")
21
-
22
- model_output = gr.Model3D(
23
- camera_position=[90, 180, 512]
24
- )
25
-
 
 
 
 
 
 
 
 
26
  with gr.Accordion("Advanced Options", open=False) as advanced_options:
27
  num_inference_steps_slider = gr.Slider(minimum=10, maximum=1000, step=10, value=50, label="Inference Steps")
28
  guidance_scale_slider = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, value=7.5, label="Guidance Scale")
29
  seed_number = gr.Number(value=6378, label="Seed")
30
- crop_size_slider = gr.Slider(minimum=128, maximum=768, step=64, value=512, label="Crop Size")
 
31
  prefix_textbox = gr.Textbox(label="Prompt Prefix", value="A Sentinel-2 image of ")
32
-
33
- generate_button.click(
34
- fn=generate_and_display,
35
- inputs=[prompt_input, num_inference_steps_slider, guidance_scale_slider, seed_number, crop_size_slider, prefix_textbox],
36
- outputs=model_output,
 
 
 
 
 
 
37
  )
38
 
39
- demo.queue().launch()
 
3
 
4
  if __name__ == '__main__':
5
  theme = gr.themes.Soft(primary_hue="emerald", secondary_hue="stone", font=[gr.themes.GoogleFont("Source Sans 3", weights=(400, 600)),'arial'])
6
+
7
+ with gr.Blocks(theme=theme) as demo:
8
+ with gr.Column(elem_classes="header"):
9
+ gr.Markdown("# 🏔 MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data")
10
+ gr.Markdown("### Paul Borne–Pons, Mikolaj Czerkawski, Rosalie Martin, Romain Rouffet")
11
+ gr.Markdown('[[Website](https://paulbornep.github.io/mesa-terrain/)] [[GitHub](https://github.com/PaulBorneP/MESA)] [[Model](https://huggingface.co/NewtNewt/MESA)] [[Dataset](https://huggingface.co/datasets/Major-TOM/Core-DEM)]')
12
+
13
+ with gr.Column(elem_classes="abstract"):
14
+ gr.Markdown("MESA is a novel generative model based on latent denoising diffusion capable of generating 2.5D representations of terrain based on the text prompt conditioning supplied via natural language. The model produces two co-registered modalities of optical and depth maps.") # Replace with your abstract text
15
+ gr.Markdown("This is a test version of the demo app. Please be aware that MESA supports primarily complex, mountainous terrains as opposed to flat land")
16
+ gr.Markdown("> ⚠️ **The generated image is quite large, so for the larger resolution (768) it might take a while to load the surface**")
 
17
  with gr.Row():
18
+ prompt_input = gr.Textbox(lines=2, placeholder="Enter a terrain description...")
19
+
20
+ with gr.Tabs() as output_tabs:
21
+ with gr.Tab("2D View (Fast)"):
22
+ generate_2d_button = gr.Button("Generate Terrain", variant="primary")
23
+ with gr.Row():
24
+ rgb_output = gr.Image(label="RGB Image")
25
+ elevation_output = gr.Image(label="Elevation Map")
26
+
27
+ with gr.Tab("3D View (Slow)"):
28
+ generate_3d_button = gr.Button("Generate Terrain", variant="primary")
29
+ model_3d_output = gr.Model3D(
30
+ camera_position=[90, 135, 512]
31
+ )
32
+
33
  with gr.Accordion("Advanced Options", open=False) as advanced_options:
34
  num_inference_steps_slider = gr.Slider(minimum=10, maximum=1000, step=10, value=50, label="Inference Steps")
35
  guidance_scale_slider = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, value=7.5, label="Guidance Scale")
36
  seed_number = gr.Number(value=6378, label="Seed")
37
+ crop_size_slider = gr.Slider(minimum=128, maximum=768, step=64, value=512, label="(3D Only) Crop Size")
38
+ vertex_count_slider = gr.Slider(minimum=0, maximum=10000, step=0, value=0, label="(3D Only) Vertex Count (Default: 0 - no reduction)")
39
  prefix_textbox = gr.Textbox(label="Prompt Prefix", value="A Sentinel-2 image of ")
40
+
41
+ generate_2d_button.click(
42
+ fn=generate_2d_view_output,
43
+ inputs=[prompt_input, num_inference_steps_slider, guidance_scale_slider, seed_number, prefix_textbox],
44
+ outputs=[rgb_output, elevation_output],
45
+ )
46
+
47
+ generate_3d_button.click(
48
+ fn=generate_3d_view_output,
49
+ inputs=[prompt_input, num_inference_steps_slider, guidance_scale_slider, seed_number, crop_size_slider, vertex_count_slider, prefix_textbox],
50
+ outputs=[model_3d_output],
51
  )
52
 
53
+ demo.queue().launch(share=True)
src/.ipynb_checkpoints/build_pipe-checkpoint.py DELETED
@@ -1,22 +0,0 @@
1
- from .pipeline_terrain import TerrainDiffusionPipeline
2
- #import models
3
- from huggingface_hub import hf_hub_download, snapshot_download
4
- import os
5
- import torch
6
-
7
- def build_pipe():
8
- print('Downloading weights...')
9
- try:
10
- os.mkdir('./weights/')
11
- except:
12
- True
13
- snapshot_download(repo_id="NewtNewt/MESA", local_dir="./weights")
14
- weight_path = './weights'
15
- print('[DONE]')
16
-
17
- print('Instantiating Model...')
18
- pipe = TerrainDiffusionPipeline.from_pretrained(weight_path, torch_dtype=torch.float16)
19
- pipe.to("cuda")
20
- print('[DONE]')
21
-
22
- return pipe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/.ipynb_checkpoints/models-checkpoint.py DELETED
@@ -1,1528 +0,0 @@
1
- from torch import nn
2
- from torch.nn import functional as F
3
- from diffusers import UNet2DConditionModel
4
- import torch
5
-
6
- def init_dem_channels(model,conv_in=None,conv_out=None):
7
- """
8
- Add a channel to the input and output of the model, with 0 initialization
9
- """
10
- # add one channel to the input and output, with 0 initialization
11
- if conv_in is not None:
12
- # add a channel to the input of the encoder
13
- pretrained_in_weights = conv_in.weight.clone()
14
- pretrained_in_bias = conv_in.bias.clone()
15
-
16
- with torch.no_grad():
17
- # weight matrix is of shape (out_channels, in_channels, kernel_size, kernel_size)
18
- model.conv_in.weight[:, :4, :, :] = pretrained_in_weights
19
- model.conv_in.weight[:, 4:, :, :] = 0
20
- # bias vector is of shape (out_channels) no need to change it
21
- model.conv_in.bias[...] = pretrained_in_bias
22
-
23
-
24
-
25
- if conv_out is not None:
26
- # add a channel to the output of the decoder
27
- pretrained_out_weights = conv_out.weight.clone()
28
- pretrained_out_bias = conv_out.bias.clone()
29
-
30
- with torch.no_grad():
31
- # weight matrix is of shape (out_channels, in_channels, kernel_size, kernel_size)
32
- model.conv_out.weight[:4, :, :, :] = pretrained_out_weights
33
- model.conv_out.weight[4:, :, :, :] = 0
34
- # bias vector is of shape (out_channels)
35
- model.conv_out.bias[:4] = pretrained_out_bias
36
- model.conv_out.bias[4:] = 0
37
- # Ensure the new layers are registered
38
- model.register_to_config()
39
-
40
- return model
41
-
42
-
43
-
44
-
45
- # Copyright 2024 The HuggingFace Team. All rights reserved.
46
- #
47
- # Licensed under the Apache License, Version 2.0 (the "License");
48
- # you may not use this file except in compliance with the License.
49
- # You may obtain a copy of the License at
50
- #
51
- # http://www.apache.org/licenses/LICENSE-2.0
52
- #
53
- # Unless required by applicable law or agreed to in writing, software
54
- # distributed under the License is distributed on an "AS IS" BASIS,
55
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
56
- # See the License for the specific language governing permissions and
57
- # limitations under the License.
58
- from dataclasses import dataclass
59
- from typing import Any, Dict, List, Optional, Tuple, Union
60
-
61
- import torch
62
- import torch.nn as nn
63
- import torch.utils.checkpoint
64
- import diffusers
65
-
66
- from diffusers.configuration_utils import ConfigMixin, register_to_config
67
- from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
68
- from diffusers.loaders.single_file_model import FromOriginalModelMixin
69
- from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
70
- from diffusers.models.activations import get_activation
71
- from diffusers.models.attention_processor import (
72
- ADDED_KV_ATTENTION_PROCESSORS,
73
- CROSS_ATTENTION_PROCESSORS,
74
- Attention,
75
- AttentionProcessor,
76
- AttnAddedKVProcessor,
77
- AttnProcessor,
78
- FusedAttnProcessor2_0,
79
- )
80
- from diffusers.models.embeddings import (
81
- GaussianFourierProjection,
82
- GLIGENTextBoundingboxProjection,
83
- ImageHintTimeEmbedding,
84
- ImageProjection,
85
- ImageTimeEmbedding,
86
- TextImageProjection,
87
- TextImageTimeEmbedding,
88
- TextTimeEmbedding,
89
- TimestepEmbedding,
90
- Timesteps,
91
- )
92
- from diffusers.models.modeling_utils import ModelMixin
93
- from diffusers.models.unets.unet_2d_blocks import (
94
- get_down_block,
95
- get_mid_block,
96
- get_up_block,
97
- )
98
-
99
-
100
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
101
-
102
-
103
- @dataclass
104
- class UNet2DConditionOutput(BaseOutput):
105
- """
106
- The output of [`UNet2DConditionModel`].
107
-
108
- Args:
109
- sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
110
- The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
111
- """
112
-
113
- sample: torch.Tensor = None
114
-
115
-
116
- class UNetDEMConditionModel(
117
- ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin
118
- ):
119
- r"""
120
- A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
121
- shaped output.
122
-
123
- This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
124
- for all models (such as downloading or saving).
125
-
126
- Parameters:
127
- sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
128
- Height and width of input/output sample.
129
- in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
130
- out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
131
- center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
132
- flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
133
- Whether to flip the sin to cos in the time embedding.
134
- freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
135
- down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
136
- The tuple of downsample blocks to use.
137
- mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
138
- Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
139
- `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
140
- up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
141
- The tuple of upsample blocks to use.
142
- only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
143
- Whether to include self-attention in the basic transformer blocks, see
144
- [`~models.attention.BasicTransformerBlock`].
145
- block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
146
- The tuple of output channels for each block.
147
- layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
148
- downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
149
- mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
150
- dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
151
- act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
152
- norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
153
- If `None`, normalization and activation layers is skipped in post-processing.
154
- norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
155
- cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
156
- The dimension of the cross attention features.
157
- transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
158
- The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
159
- [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
160
- [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
161
- reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
162
- The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
163
- blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
164
- [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
165
- [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
166
- encoder_hid_dim (`int`, *optional*, defaults to None):
167
- If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
168
- dimension to `cross_attention_dim`.
169
- encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
170
- If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
171
- embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
172
- attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
173
- num_attention_heads (`int`, *optional*):
174
- The number of attention heads. If not defined, defaults to `attention_head_dim`
175
- resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
176
- for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
177
- class_embed_type (`str`, *optional*, defaults to `None`):
178
- The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
179
- `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
180
- addition_embed_type (`str`, *optional*, defaults to `None`):
181
- Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
182
- "text". "text" will use the `TextTimeEmbedding` layer.
183
- addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
184
- Dimension for the timestep embeddings.
185
- num_class_embeds (`int`, *optional*, defaults to `None`):
186
- Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
187
- class conditioning with `class_embed_type` equal to `None`.
188
- time_embedding_type (`str`, *optional*, defaults to `positional`):
189
- The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
190
- time_embedding_dim (`int`, *optional*, defaults to `None`):
191
- An optional override for the dimension of the projected time embedding.
192
- time_embedding_act_fn (`str`, *optional*, defaults to `None`):
193
- Optional activation function to use only once on the time embeddings before they are passed to the rest of
194
- the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
195
- timestep_post_act (`str`, *optional*, defaults to `None`):
196
- The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
197
- time_cond_proj_dim (`int`, *optional*, defaults to `None`):
198
- The dimension of `cond_proj` layer in the timestep embedding.
199
- conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
200
- conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
201
- projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
202
- `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
203
- class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
204
- embeddings with the class embeddings.
205
- mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
206
- Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
207
- `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
208
- `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
209
- otherwise.
210
- """
211
-
212
- _supports_gradient_checkpointing = True
213
- _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
214
-
215
- @register_to_config
216
- def __init__(
217
- self,
218
- sample_size: Optional[int] = None,
219
- in_channels: int = 8,
220
- out_channels: int = 8,
221
- center_input_sample: bool = False,
222
- flip_sin_to_cos: bool = True,
223
- freq_shift: int = 0,
224
- down_block_types: Tuple[str] = (
225
- "CrossAttnDownBlock2D",
226
- "CrossAttnDownBlock2D",
227
- "CrossAttnDownBlock2D",
228
- "DownBlock2D",
229
- ),
230
- mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
231
- up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
232
- only_cross_attention: Union[bool, Tuple[bool]] = False,
233
- block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
234
- layers_per_block: Union[int, Tuple[int]] = 2,
235
- downsample_padding: int = 1,
236
- mid_block_scale_factor: float = 1,
237
- dropout: float = 0.0,
238
- act_fn: str = "silu",
239
- norm_num_groups: Optional[int] = 32,
240
- norm_eps: float = 1e-5,
241
- cross_attention_dim: Union[int, Tuple[int]] = 1280,
242
- transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
243
- reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
244
- encoder_hid_dim: Optional[int] = None,
245
- encoder_hid_dim_type: Optional[str] = None,
246
- attention_head_dim: Union[int, Tuple[int]] = 8,
247
- num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
248
- dual_cross_attention: bool = False,
249
- use_linear_projection: bool = False,
250
- class_embed_type: Optional[str] = None,
251
- addition_embed_type: Optional[str] = None,
252
- addition_time_embed_dim: Optional[int] = None,
253
- num_class_embeds: Optional[int] = None,
254
- upcast_attention: bool = False,
255
- resnet_time_scale_shift: str = "default",
256
- resnet_skip_time_act: bool = False,
257
- resnet_out_scale_factor: float = 1.0,
258
- time_embedding_type: str = "positional",
259
- time_embedding_dim: Optional[int] = None,
260
- time_embedding_act_fn: Optional[str] = None,
261
- timestep_post_act: Optional[str] = None,
262
- time_cond_proj_dim: Optional[int] = None,
263
- conv_in_kernel: int = 3,
264
- conv_out_kernel: int = 3,
265
- projection_class_embeddings_input_dim: Optional[int] = None,
266
- attention_type: str = "default",
267
- class_embeddings_concat: bool = False,
268
- mid_block_only_cross_attention: Optional[bool] = None,
269
- cross_attention_norm: Optional[str] = None,
270
- addition_embed_type_num_heads: int = 64,
271
- ):
272
- super().__init__()
273
-
274
- self.sample_size = sample_size
275
-
276
- if num_attention_heads is not None:
277
- raise ValueError(
278
- "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
279
- )
280
-
281
- # If `num_attention_heads` is not defined (which is the case for most models)
282
- # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
283
- # The reason for this behavior is to correct for incorrectly named variables that were introduced
284
- # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
285
- # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
286
- # which is why we correct for the naming here.
287
- num_attention_heads = num_attention_heads or attention_head_dim
288
-
289
- # Check inputs
290
- self._check_config(
291
- down_block_types=down_block_types,
292
- up_block_types=up_block_types,
293
- only_cross_attention=only_cross_attention,
294
- block_out_channels=block_out_channels,
295
- layers_per_block=layers_per_block,
296
- cross_attention_dim=cross_attention_dim,
297
- transformer_layers_per_block=transformer_layers_per_block,
298
- reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
299
- attention_head_dim=attention_head_dim,
300
- num_attention_heads=num_attention_heads,
301
- )
302
-
303
- # input
304
- conv_in_padding = (conv_in_kernel - 1) // 2
305
- self.conv_in_img = nn.Conv2d(
306
- in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
307
- )
308
- self.conv_in_dem = nn.Conv2d(
309
- in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
310
- )
311
-
312
- # time
313
- time_embed_dim, timestep_input_dim = self._set_time_proj(
314
- time_embedding_type,
315
- block_out_channels=block_out_channels,
316
- flip_sin_to_cos=flip_sin_to_cos,
317
- freq_shift=freq_shift,
318
- time_embedding_dim=time_embedding_dim,
319
- )
320
-
321
- self.time_embedding = TimestepEmbedding(
322
- timestep_input_dim,
323
- time_embed_dim,
324
- act_fn=act_fn,
325
- post_act_fn=timestep_post_act,
326
- cond_proj_dim=time_cond_proj_dim,
327
- )
328
-
329
- self._set_encoder_hid_proj(
330
- encoder_hid_dim_type,
331
- cross_attention_dim=cross_attention_dim,
332
- encoder_hid_dim=encoder_hid_dim,
333
- )
334
-
335
- # class embedding
336
- self._set_class_embedding(
337
- class_embed_type,
338
- act_fn=act_fn,
339
- num_class_embeds=num_class_embeds,
340
- projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
341
- time_embed_dim=time_embed_dim,
342
- timestep_input_dim=timestep_input_dim,
343
- )
344
-
345
- self._set_add_embedding(
346
- addition_embed_type,
347
- addition_embed_type_num_heads=addition_embed_type_num_heads,
348
- addition_time_embed_dim=addition_time_embed_dim,
349
- cross_attention_dim=cross_attention_dim,
350
- encoder_hid_dim=encoder_hid_dim,
351
- flip_sin_to_cos=flip_sin_to_cos,
352
- freq_shift=freq_shift,
353
- projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
354
- time_embed_dim=time_embed_dim,
355
- )
356
-
357
- if time_embedding_act_fn is None:
358
- self.time_embed_act = None
359
- else:
360
- self.time_embed_act = get_activation(time_embedding_act_fn)
361
-
362
- self.down_blocks = nn.ModuleList([])
363
- self.up_blocks = nn.ModuleList([])
364
-
365
- if isinstance(only_cross_attention, bool):
366
- if mid_block_only_cross_attention is None:
367
- mid_block_only_cross_attention = only_cross_attention
368
-
369
- only_cross_attention = [only_cross_attention] * len(down_block_types)
370
-
371
- if mid_block_only_cross_attention is None:
372
- mid_block_only_cross_attention = False
373
-
374
- if isinstance(num_attention_heads, int):
375
- num_attention_heads = (num_attention_heads,) * len(down_block_types)
376
-
377
- if isinstance(attention_head_dim, int):
378
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
379
-
380
- if isinstance(cross_attention_dim, int):
381
- cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
382
-
383
- if isinstance(layers_per_block, int):
384
- layers_per_block = [layers_per_block] * len(down_block_types)
385
-
386
- if isinstance(transformer_layers_per_block, int):
387
- transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
388
-
389
- if class_embeddings_concat:
390
- # The time embeddings are concatenated with the class embeddings. The dimension of the
391
- # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
392
- # regular time embeddings
393
- blocks_time_embed_dim = time_embed_dim * 2
394
- else:
395
- blocks_time_embed_dim = time_embed_dim
396
-
397
- # down
398
- output_channel = block_out_channels[0]
399
-
400
-
401
- for i, down_block_type in enumerate(down_block_types):
402
- input_channel = output_channel
403
- output_channel = block_out_channels[i]
404
- is_final_block = i == len(block_out_channels) - 1
405
- down_block_kwargs = {"down_block_type":down_block_type,
406
- "num_layers":layers_per_block[i],
407
- "transformer_layers_per_block":transformer_layers_per_block[i],
408
- "in_channels":input_channel,
409
- "out_channels":output_channel,
410
- "temb_channels":blocks_time_embed_dim,
411
- "add_downsample":not is_final_block,
412
- "resnet_eps":norm_eps,
413
- "resnet_act_fn":act_fn,
414
- "resnet_groups":norm_num_groups,
415
- "cross_attention_dim":cross_attention_dim[i],
416
- "num_attention_heads":num_attention_heads[i],
417
- "downsample_padding":downsample_padding,
418
- "dual_cross_attention":dual_cross_attention,
419
- "use_linear_projection":use_linear_projection,
420
- "only_cross_attention":only_cross_attention[i],
421
- "upcast_attention":upcast_attention,
422
- "resnet_time_scale_shift":resnet_time_scale_shift,
423
- "attention_type":attention_type,
424
- "resnet_skip_time_act":resnet_skip_time_act,
425
- "resnet_out_scale_factor":resnet_out_scale_factor,
426
- "cross_attention_norm":cross_attention_norm,
427
- "attention_head_dim":attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
428
- "dropout":dropout}
429
-
430
- if i == 0:
431
- self.head_img = get_down_block(**down_block_kwargs)
432
- # same architecture as the head_img but different weights
433
- self.head_dem = get_down_block(**down_block_kwargs)
434
- # elif i == 1:
435
- # down_block_kwargs["in_channels"] = input_channel *2 # concatenate the output of the head_img and head_dem
436
- # down_block = get_down_block(**down_block_kwargs)
437
- # self.down_blocks.append(down_block)
438
- else:
439
- down_block = get_down_block(**down_block_kwargs)
440
- self.down_blocks.append(down_block)
441
-
442
- # mid
443
- self.mid_block = get_mid_block(
444
- mid_block_type,
445
- temb_channels=blocks_time_embed_dim,
446
- in_channels=block_out_channels[-1],
447
- resnet_eps=norm_eps,
448
- resnet_act_fn=act_fn,
449
- resnet_groups=norm_num_groups,
450
- output_scale_factor=mid_block_scale_factor,
451
- transformer_layers_per_block=transformer_layers_per_block[-1],
452
- num_attention_heads=num_attention_heads[-1],
453
- cross_attention_dim=cross_attention_dim[-1],
454
- dual_cross_attention=dual_cross_attention,
455
- use_linear_projection=use_linear_projection,
456
- mid_block_only_cross_attention=mid_block_only_cross_attention,
457
- upcast_attention=upcast_attention,
458
- resnet_time_scale_shift=resnet_time_scale_shift,
459
- attention_type=attention_type,
460
- resnet_skip_time_act=resnet_skip_time_act,
461
- cross_attention_norm=cross_attention_norm,
462
- attention_head_dim=attention_head_dim[-1],
463
- dropout=dropout,
464
- )
465
-
466
- # count how many layers upsample the images
467
- self.num_upsamplers = 0
468
-
469
- # up
470
- reversed_block_out_channels = list(reversed(block_out_channels))
471
- reversed_num_attention_heads = list(reversed(num_attention_heads))
472
- reversed_layers_per_block = list(reversed(layers_per_block))
473
- reversed_cross_attention_dim = list(reversed(cross_attention_dim))
474
- reversed_transformer_layers_per_block = (
475
- list(reversed(transformer_layers_per_block))
476
- if reverse_transformer_layers_per_block is None
477
- else reverse_transformer_layers_per_block
478
- )
479
- only_cross_attention = list(reversed(only_cross_attention))
480
-
481
- output_channel = reversed_block_out_channels[0]
482
- for i, up_block_type in enumerate(up_block_types):
483
- is_final_block = i == len(block_out_channels) - 1
484
-
485
- prev_output_channel = output_channel
486
- output_channel = reversed_block_out_channels[i]
487
- input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
488
-
489
- # add upsample block for all BUT final layer
490
- if not is_final_block:
491
- add_upsample = True
492
- self.num_upsamplers += 1
493
- else:
494
- add_upsample = False
495
-
496
- up_block_kwargs = {"up_block_type":up_block_type,
497
- "num_layers":reversed_layers_per_block[i] + 1,
498
- "transformer_layers_per_block":reversed_transformer_layers_per_block[i],
499
- "in_channels":input_channel,
500
- "out_channels":output_channel,
501
- "prev_output_channel":prev_output_channel,
502
- "temb_channels":blocks_time_embed_dim,
503
- "add_upsample":add_upsample,
504
- "resnet_eps":norm_eps,
505
- "resnet_act_fn":act_fn,
506
- "resolution_idx":i,
507
- "resnet_groups":norm_num_groups,
508
- "cross_attention_dim":reversed_cross_attention_dim[i],
509
- "num_attention_heads":reversed_num_attention_heads[i],
510
- "dual_cross_attention":dual_cross_attention,
511
- "use_linear_projection":use_linear_projection,
512
- "only_cross_attention":only_cross_attention[i],
513
- "upcast_attention":upcast_attention,
514
- "resnet_time_scale_shift":resnet_time_scale_shift,
515
- "attention_type":attention_type,
516
- "resnet_skip_time_act":resnet_skip_time_act,
517
- "resnet_out_scale_factor":resnet_out_scale_factor,
518
- "cross_attention_norm":cross_attention_norm,
519
- "attention_head_dim":attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
520
- "dropout":dropout,}
521
-
522
- # if i == len(block_out_channels) - 2:
523
- # up_block_kwargs["in_channels"] = input_channel*2
524
- # up_block = get_up_block(**up_block_kwargs)
525
- # self.up_blocks.append(up_block)
526
-
527
- if is_final_block :
528
-
529
- self.head_out_img = get_up_block(**up_block_kwargs)
530
- self.head_out_dem = get_up_block(**up_block_kwargs)
531
-
532
- else :
533
- up_block = get_up_block(**up_block_kwargs)
534
- self.up_blocks.append(up_block)
535
-
536
-
537
- # out
538
- if norm_num_groups is not None:
539
- self.conv_norm_out_img = nn.GroupNorm(
540
- num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
541
- )
542
- self.conv_norm_out_dem = nn.GroupNorm(
543
- num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
544
- )
545
-
546
- self.conv_act = get_activation(act_fn)
547
-
548
- else:
549
- self.conv_norm_out_img = None
550
- self.conv_norm_out_dem = None
551
- self.conv_act = None
552
-
553
- conv_out_padding = (conv_out_kernel - 1) // 2
554
- self.conv_out_img = nn.Conv2d(
555
- block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
556
- )
557
- self.conv_out_dem = nn.Conv2d(
558
- block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
559
- )
560
-
561
- self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
562
-
563
- def _check_config(
564
- self,
565
- down_block_types: Tuple[str],
566
- up_block_types: Tuple[str],
567
- only_cross_attention: Union[bool, Tuple[bool]],
568
- block_out_channels: Tuple[int],
569
- layers_per_block: Union[int, Tuple[int]],
570
- cross_attention_dim: Union[int, Tuple[int]],
571
- transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
572
- reverse_transformer_layers_per_block: bool,
573
- attention_head_dim: int,
574
- num_attention_heads: Optional[Union[int, Tuple[int]]],
575
- ):
576
- if len(down_block_types) != len(up_block_types):
577
- raise ValueError(
578
- f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
579
- )
580
-
581
- if len(block_out_channels) != len(down_block_types):
582
- raise ValueError(
583
- f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
584
- )
585
-
586
- if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
587
- raise ValueError(
588
- f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
589
- )
590
-
591
- if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
592
- raise ValueError(
593
- f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
594
- )
595
-
596
- if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
597
- raise ValueError(
598
- f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
599
- )
600
-
601
- if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
602
- raise ValueError(
603
- f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
604
- )
605
-
606
- if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
607
- raise ValueError(
608
- f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
609
- )
610
- if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
611
- for layer_number_per_block in transformer_layers_per_block:
612
- if isinstance(layer_number_per_block, list):
613
- raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
614
-
615
- def _set_time_proj(
616
- self,
617
- time_embedding_type: str,
618
- block_out_channels: int,
619
- flip_sin_to_cos: bool,
620
- freq_shift: float,
621
- time_embedding_dim: int,
622
- ) -> Tuple[int, int]:
623
- if time_embedding_type == "fourier":
624
- time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
625
- if time_embed_dim % 2 != 0:
626
- raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
627
- self.time_proj = GaussianFourierProjection(
628
- time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
629
- )
630
- timestep_input_dim = time_embed_dim
631
- elif time_embedding_type == "positional":
632
- time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
633
-
634
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
635
- timestep_input_dim = block_out_channels[0]
636
- else:
637
- raise ValueError(
638
- f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
639
- )
640
-
641
- return time_embed_dim, timestep_input_dim
642
-
643
- def _set_encoder_hid_proj(
644
- self,
645
- encoder_hid_dim_type: Optional[str],
646
- cross_attention_dim: Union[int, Tuple[int]],
647
- encoder_hid_dim: Optional[int],
648
- ):
649
- if encoder_hid_dim_type is None and encoder_hid_dim is not None:
650
- encoder_hid_dim_type = "text_proj"
651
- self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
652
- logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
653
-
654
- if encoder_hid_dim is None and encoder_hid_dim_type is not None:
655
- raise ValueError(
656
- f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
657
- )
658
-
659
- if encoder_hid_dim_type == "text_proj":
660
- self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
661
- elif encoder_hid_dim_type == "text_image_proj":
662
- # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
663
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
664
- # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
665
- self.encoder_hid_proj = TextImageProjection(
666
- text_embed_dim=encoder_hid_dim,
667
- image_embed_dim=cross_attention_dim,
668
- cross_attention_dim=cross_attention_dim,
669
- )
670
- elif encoder_hid_dim_type == "image_proj":
671
- # Kandinsky 2.2
672
- self.encoder_hid_proj = ImageProjection(
673
- image_embed_dim=encoder_hid_dim,
674
- cross_attention_dim=cross_attention_dim,
675
- )
676
- elif encoder_hid_dim_type is not None:
677
- raise ValueError(
678
- f"`encoder_hid_dim_type`: {encoder_hid_dim_type} must be None, 'text_proj', 'text_image_proj', or 'image_proj'."
679
- )
680
- else:
681
- self.encoder_hid_proj = None
682
-
683
- def _set_class_embedding(
684
- self,
685
- class_embed_type: Optional[str],
686
- act_fn: str,
687
- num_class_embeds: Optional[int],
688
- projection_class_embeddings_input_dim: Optional[int],
689
- time_embed_dim: int,
690
- timestep_input_dim: int,
691
- ):
692
- if class_embed_type is None and num_class_embeds is not None:
693
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
694
- elif class_embed_type == "timestep":
695
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
696
- elif class_embed_type == "identity":
697
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
698
- elif class_embed_type == "projection":
699
- if projection_class_embeddings_input_dim is None:
700
- raise ValueError(
701
- "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
702
- )
703
- # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
704
- # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
705
- # 2. it projects from an arbitrary input dimension.
706
- #
707
- # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
708
- # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
709
- # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
710
- self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
711
- elif class_embed_type == "simple_projection":
712
- if projection_class_embeddings_input_dim is None:
713
- raise ValueError(
714
- "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
715
- )
716
- self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
717
- else:
718
- self.class_embedding = None
719
-
720
- def _set_add_embedding(
721
- self,
722
- addition_embed_type: str,
723
- addition_embed_type_num_heads: int,
724
- addition_time_embed_dim: Optional[int],
725
- flip_sin_to_cos: bool,
726
- freq_shift: float,
727
- cross_attention_dim: Optional[int],
728
- encoder_hid_dim: Optional[int],
729
- projection_class_embeddings_input_dim: Optional[int],
730
- time_embed_dim: int,
731
- ):
732
- if addition_embed_type == "text":
733
- if encoder_hid_dim is not None:
734
- text_time_embedding_from_dim = encoder_hid_dim
735
- else:
736
- text_time_embedding_from_dim = cross_attention_dim
737
-
738
- self.add_embedding = TextTimeEmbedding(
739
- text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
740
- )
741
- elif addition_embed_type == "text_image":
742
- # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
743
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
744
- # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
745
- self.add_embedding = TextImageTimeEmbedding(
746
- text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
747
- )
748
- elif addition_embed_type == "text_time":
749
- self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
750
- self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
751
- elif addition_embed_type == "image":
752
- # Kandinsky 2.2
753
- self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
754
- elif addition_embed_type == "image_hint":
755
- # Kandinsky 2.2 ControlNet
756
- self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
757
- elif addition_embed_type is not None:
758
- raise ValueError(
759
- f"`addition_embed_type`: {addition_embed_type} must be None, 'text', 'text_image', 'text_time', 'image', or 'image_hint'."
760
- )
761
-
762
- def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
763
- if attention_type in ["gated", "gated-text-image"]:
764
- positive_len = 768
765
- if isinstance(cross_attention_dim, int):
766
- positive_len = cross_attention_dim
767
- elif isinstance(cross_attention_dim, (list, tuple)):
768
- positive_len = cross_attention_dim[0]
769
-
770
- feature_type = "text-only" if attention_type == "gated" else "text-image"
771
- self.position_net = GLIGENTextBoundingboxProjection(
772
- positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
773
- )
774
-
775
- @property
776
- def attn_processors(self) -> Dict[str, AttentionProcessor]:
777
- r"""
778
- Returns:
779
- `dict` of attention processors: A dictionary containing all attention processors used in the model with
780
- indexed by its weight name.
781
- """
782
- # set recursively
783
- processors = {}
784
-
785
- def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
786
- if hasattr(module, "get_processor"):
787
- processors[f"{name}.processor"] = module.get_processor()
788
-
789
- for sub_name, child in module.named_children():
790
- fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
791
-
792
- return processors
793
-
794
- for name, module in self.named_children():
795
- fn_recursive_add_processors(name, module, processors)
796
-
797
- return processors
798
-
799
- def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
800
- r"""
801
- Sets the attention processor to use to compute attention.
802
-
803
- Parameters:
804
- processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
805
- The instantiated processor class or a dictionary of processor classes that will be set as the processor
806
- for **all** `Attention` layers.
807
-
808
- If `processor` is a dict, the key needs to define the path to the corresponding cross attention
809
- processor. This is strongly recommended when setting trainable attention processors.
810
-
811
- """
812
- count = len(self.attn_processors.keys())
813
-
814
- if isinstance(processor, dict) and len(processor) != count:
815
- raise ValueError(
816
- f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
817
- f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
818
- )
819
-
820
- def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
821
- if hasattr(module, "set_processor"):
822
- if not isinstance(processor, dict):
823
- module.set_processor(processor)
824
- else:
825
- module.set_processor(processor.pop(f"{name}.processor"))
826
-
827
- for sub_name, child in module.named_children():
828
- fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
829
-
830
- for name, module in self.named_children():
831
- fn_recursive_attn_processor(name, module, processor)
832
-
833
- def set_default_attn_processor(self):
834
- """
835
- Disables custom attention processors and sets the default attention implementation.
836
- """
837
- if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
838
- processor = AttnAddedKVProcessor()
839
- elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
840
- processor = AttnProcessor()
841
- else:
842
- raise ValueError(
843
- f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
844
- )
845
-
846
- self.set_attn_processor(processor)
847
-
848
- def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
849
- r"""
850
- Enable sliced attention computation.
851
-
852
- When this option is enabled, the attention module splits the input tensor in slices to compute attention in
853
- several steps. This is useful for saving some memory in exchange for a small decrease in speed.
854
-
855
- Args:
856
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
857
- When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
858
- `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
859
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
860
- must be a multiple of `slice_size`.
861
- """
862
- sliceable_head_dims = []
863
-
864
- def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
865
- if hasattr(module, "set_attention_slice"):
866
- sliceable_head_dims.append(module.sliceable_head_dim)
867
-
868
- for child in module.children():
869
- fn_recursive_retrieve_sliceable_dims(child)
870
-
871
- # retrieve number of attention layers
872
- for module in self.children():
873
- fn_recursive_retrieve_sliceable_dims(module)
874
-
875
- num_sliceable_layers = len(sliceable_head_dims)
876
-
877
- if slice_size == "auto":
878
- # half the attention head size is usually a good trade-off between
879
- # speed and memory
880
- slice_size = [dim // 2 for dim in sliceable_head_dims]
881
- elif slice_size == "max":
882
- # make smallest slice possible
883
- slice_size = num_sliceable_layers * [1]
884
-
885
- slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
886
-
887
- if len(slice_size) != len(sliceable_head_dims):
888
- raise ValueError(
889
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
890
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
891
- )
892
-
893
- for i in range(len(slice_size)):
894
- size = slice_size[i]
895
- dim = sliceable_head_dims[i]
896
- if size is not None and size > dim:
897
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
898
-
899
- # Recursively walk through all the children.
900
- # Any children which exposes the set_attention_slice method
901
- # gets the message
902
- def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
903
- if hasattr(module, "set_attention_slice"):
904
- module.set_attention_slice(slice_size.pop())
905
-
906
- for child in module.children():
907
- fn_recursive_set_attention_slice(child, slice_size)
908
-
909
- reversed_slice_size = list(reversed(slice_size))
910
- for module in self.children():
911
- fn_recursive_set_attention_slice(module, reversed_slice_size)
912
-
913
- def _set_gradient_checkpointing(self, module, value=False):
914
- if hasattr(module, "gradient_checkpointing"):
915
- module.gradient_checkpointing = value
916
-
917
- def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
918
- r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
919
-
920
- The suffixes after the scaling factors represent the stage blocks where they are being applied.
921
-
922
- Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
923
- are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
924
-
925
- Args:
926
- s1 (`float`):
927
- Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
928
- mitigate the "oversmoothing effect" in the enhanced denoising process.
929
- s2 (`float`):
930
- Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
931
- mitigate the "oversmoothing effect" in the enhanced denoising process.
932
- b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
933
- b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
934
- """
935
- for i, upsample_block in enumerate(self.up_blocks):
936
- setattr(upsample_block, "s1", s1)
937
- setattr(upsample_block, "s2", s2)
938
- setattr(upsample_block, "b1", b1)
939
- setattr(upsample_block, "b2", b2)
940
-
941
- def disable_freeu(self):
942
- """Disables the FreeU mechanism."""
943
- freeu_keys = {"s1", "s2", "b1", "b2"}
944
- for i, upsample_block in enumerate(self.up_blocks):
945
- for k in freeu_keys:
946
- if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
947
- setattr(upsample_block, k, None)
948
-
949
- def fuse_qkv_projections(self):
950
- """
951
- Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
952
- are fused. For cross-attention modules, key and value projection matrices are fused.
953
-
954
- <Tip warning={true}>
955
-
956
- This API is 🧪 experimental.
957
-
958
- </Tip>
959
- """
960
- self.original_attn_processors = None
961
-
962
- for _, attn_processor in self.attn_processors.items():
963
- if "Added" in str(attn_processor.__class__.__name__):
964
- raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
965
-
966
- self.original_attn_processors = self.attn_processors
967
-
968
- for module in self.modules():
969
- if isinstance(module, Attention):
970
- module.fuse_projections(fuse=True)
971
-
972
- self.set_attn_processor(FusedAttnProcessor2_0())
973
-
974
- def unfuse_qkv_projections(self):
975
- """Disables the fused QKV projection if enabled.
976
-
977
- <Tip warning={true}>
978
-
979
- This API is 🧪 experimental.
980
-
981
- </Tip>
982
-
983
- """
984
- if self.original_attn_processors is not None:
985
- self.set_attn_processor(self.original_attn_processors)
986
-
987
- def get_time_embed(
988
- self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
989
- ) -> Optional[torch.Tensor]:
990
- timesteps = timestep
991
- if not torch.is_tensor(timesteps):
992
- # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
993
- # This would be a good case for the `match` statement (Python 3.10+)
994
- is_mps = sample.device.type == "mps"
995
- if isinstance(timestep, float):
996
- dtype = torch.float32 if is_mps else torch.float64
997
- else:
998
- dtype = torch.int32 if is_mps else torch.int64
999
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
1000
- elif len(timesteps.shape) == 0:
1001
- timesteps = timesteps[None].to(sample.device)
1002
-
1003
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1004
- timesteps = timesteps.expand(sample.shape[0])
1005
-
1006
- t_emb = self.time_proj(timesteps)
1007
- # `Timesteps` does not contain any weights and will always return f32 tensors
1008
- # but time_embedding might actually be running in fp16. so we need to cast here.
1009
- # there might be better ways to encapsulate this.
1010
- t_emb = t_emb.to(dtype=sample.dtype)
1011
- return t_emb
1012
-
1013
- def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
1014
- class_emb = None
1015
- if self.class_embedding is not None:
1016
- if class_labels is None:
1017
- raise ValueError("class_labels should be provided when num_class_embeds > 0")
1018
-
1019
- if self.config.class_embed_type == "timestep":
1020
- class_labels = self.time_proj(class_labels)
1021
-
1022
- # `Timesteps` does not contain any weights and will always return f32 tensors
1023
- # there might be better ways to encapsulate this.
1024
- class_labels = class_labels.to(dtype=sample.dtype)
1025
-
1026
- class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
1027
- return class_emb
1028
-
1029
- def get_aug_embed(
1030
- self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
1031
- ) -> Optional[torch.Tensor]:
1032
- aug_emb = None
1033
- if self.config.addition_embed_type == "text":
1034
- aug_emb = self.add_embedding(encoder_hidden_states)
1035
- elif self.config.addition_embed_type == "text_image":
1036
- # Kandinsky 2.1 - style
1037
- if "image_embeds" not in added_cond_kwargs:
1038
- raise ValueError(
1039
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1040
- )
1041
-
1042
- image_embs = added_cond_kwargs.get("image_embeds")
1043
- text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
1044
- aug_emb = self.add_embedding(text_embs, image_embs)
1045
- elif self.config.addition_embed_type == "text_time":
1046
- # SDXL - style
1047
- if "text_embeds" not in added_cond_kwargs:
1048
- raise ValueError(
1049
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
1050
- )
1051
- text_embeds = added_cond_kwargs.get("text_embeds")
1052
- if "time_ids" not in added_cond_kwargs:
1053
- raise ValueError(
1054
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
1055
- )
1056
- time_ids = added_cond_kwargs.get("time_ids")
1057
- time_embeds = self.add_time_proj(time_ids.flatten())
1058
- time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
1059
- add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
1060
- add_embeds = add_embeds.to(emb.dtype)
1061
- aug_emb = self.add_embedding(add_embeds)
1062
- elif self.config.addition_embed_type == "image":
1063
- # Kandinsky 2.2 - style
1064
- if "image_embeds" not in added_cond_kwargs:
1065
- raise ValueError(
1066
- f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1067
- )
1068
- image_embs = added_cond_kwargs.get("image_embeds")
1069
- aug_emb = self.add_embedding(image_embs)
1070
- elif self.config.addition_embed_type == "image_hint":
1071
- # Kandinsky 2.2 ControlNet - style
1072
- if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
1073
- raise ValueError(
1074
- f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
1075
- )
1076
- image_embs = added_cond_kwargs.get("image_embeds")
1077
- hint = added_cond_kwargs.get("hint")
1078
- aug_emb = self.add_embedding(image_embs, hint)
1079
- return aug_emb
1080
-
1081
- def process_encoder_hidden_states(
1082
- self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
1083
- ) -> torch.Tensor:
1084
- if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
1085
- encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
1086
- elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
1087
- # Kandinsky 2.1 - style
1088
- if "image_embeds" not in added_cond_kwargs:
1089
- raise ValueError(
1090
- f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1091
- )
1092
-
1093
- image_embeds = added_cond_kwargs.get("image_embeds")
1094
- encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
1095
- elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
1096
- # Kandinsky 2.2 - style
1097
- if "image_embeds" not in added_cond_kwargs:
1098
- raise ValueError(
1099
- f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1100
- )
1101
- image_embeds = added_cond_kwargs.get("image_embeds")
1102
- encoder_hidden_states = self.encoder_hid_proj(image_embeds)
1103
- elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
1104
- if "image_embeds" not in added_cond_kwargs:
1105
- raise ValueError(
1106
- f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1107
- )
1108
-
1109
- if hasattr(self, "text_encoder_hid_proj") and self.text_encoder_hid_proj is not None:
1110
- encoder_hidden_states = self.text_encoder_hid_proj(encoder_hidden_states)
1111
-
1112
- image_embeds = added_cond_kwargs.get("image_embeds")
1113
- image_embeds = self.encoder_hid_proj(image_embeds)
1114
- encoder_hidden_states = (encoder_hidden_states, image_embeds)
1115
- return encoder_hidden_states
1116
-
1117
- def forward(
1118
- self,
1119
- sample: torch.Tensor,
1120
- timestep: Union[torch.Tensor, float, int],
1121
- encoder_hidden_states: torch.Tensor,
1122
- class_labels: Optional[torch.Tensor] = None,
1123
- timestep_cond: Optional[torch.Tensor] = None,
1124
- attention_mask: Optional[torch.Tensor] = None,
1125
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1126
- added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
1127
- down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
1128
- mid_block_additional_residual: Optional[torch.Tensor] = None,
1129
- down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
1130
- encoder_attention_mask: Optional[torch.Tensor] = None,
1131
- return_dict: bool = True,
1132
- ) -> Union[UNet2DConditionOutput, Tuple]:
1133
- r"""
1134
- The [`UNet2DConditionModel`] forward method.
1135
-
1136
- Args:
1137
- sample (`torch.Tensor`):
1138
- The noisy input tensor with the following shape `(batch, channel, height, width)`.
1139
- timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
1140
- encoder_hidden_states (`torch.Tensor`):
1141
- The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
1142
- class_labels (`torch.Tensor`, *optional*, defaults to `None`):
1143
- Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
1144
- timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
1145
- Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
1146
- through the `self.time_embedding` layer to obtain the timestep embeddings.
1147
- attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
1148
- An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
1149
- is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
1150
- negative values to the attention scores corresponding to "discard" tokens.
1151
- cross_attention_kwargs (`dict`, *optional*):
1152
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1153
- `self.processor` in
1154
- [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1155
- added_cond_kwargs: (`dict`, *optional*):
1156
- A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
1157
- are passed along to the UNet blocks.
1158
- down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
1159
- A tuple of tensors that if specified are added to the residuals of down unet blocks.
1160
- mid_block_additional_residual: (`torch.Tensor`, *optional*):
1161
- A tensor that if specified is added to the residual of the middle unet block.
1162
- down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
1163
- additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
1164
- encoder_attention_mask (`torch.Tensor`):
1165
- A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
1166
- `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
1167
- which adds large negative values to the attention scores corresponding to "discard" tokens.
1168
- return_dict (`bool`, *optional*, defaults to `True`):
1169
- Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
1170
- tuple.
1171
-
1172
- Returns:
1173
- [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
1174
- If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
1175
- otherwise a `tuple` is returned where the first element is the sample tensor.
1176
- """
1177
- # By default samples have to be AT least a multiple of the overall upsampling factor.
1178
- # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
1179
- # However, the upsampling interpolation output size can be forced to fit any upsampling size
1180
- # on the fly if necessary.
1181
- default_overall_up_factor = 2**self.num_upsamplers
1182
-
1183
- # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
1184
- forward_upsample_size = False
1185
- upsample_size = None
1186
-
1187
- for dim in sample.shape[-2:]:
1188
- if dim % default_overall_up_factor != 0:
1189
- # Forward upsample size to force interpolation output size.
1190
- forward_upsample_size = True
1191
- break
1192
-
1193
- # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
1194
- # expects mask of shape:
1195
- # [batch, key_tokens]
1196
- # adds singleton query_tokens dimension:
1197
- # [batch, 1, key_tokens]
1198
- # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
1199
- # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
1200
- # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
1201
- if attention_mask is not None:
1202
- # assume that mask is expressed as:
1203
- # (1 = keep, 0 = discard)
1204
- # convert mask into a bias that can be added to attention scores:
1205
- # (keep = +0, discard = -10000.0)
1206
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
1207
- attention_mask = attention_mask.unsqueeze(1)
1208
-
1209
- # convert encoder_attention_mask to a bias the same way we do for attention_mask
1210
- if encoder_attention_mask is not None:
1211
- encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
1212
- encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
1213
-
1214
- # 0. center input if necessary
1215
- if self.config.center_input_sample:
1216
- sample = 2 * sample - 1.0
1217
-
1218
- # 1. time
1219
- t_emb = self.get_time_embed(sample=sample, timestep=timestep)
1220
- emb = self.time_embedding(t_emb, timestep_cond)
1221
-
1222
- class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
1223
- if class_emb is not None:
1224
- if self.config.class_embeddings_concat:
1225
- emb = torch.cat([emb, class_emb], dim=-1)
1226
- else:
1227
- emb = emb + class_emb
1228
-
1229
- aug_emb = self.get_aug_embed(
1230
- emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
1231
- )
1232
- if self.config.addition_embed_type == "image_hint":
1233
- aug_emb, hint = aug_emb
1234
- sample = torch.cat([sample, hint], dim=1)
1235
-
1236
-
1237
- emb = emb + aug_emb if aug_emb is not None else emb
1238
-
1239
- if self.time_embed_act is not None:
1240
- emb = self.time_embed_act(emb)
1241
-
1242
- encoder_hidden_states = self.process_encoder_hidden_states(
1243
- encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
1244
- )
1245
-
1246
- sample_img = sample[:, :4, :, :]
1247
- sample_dem = sample[:, 4:, :, :]
1248
- # 2. pre-process using the two different heads
1249
- sample_img = self.conv_in_img(sample_img)
1250
- sample_dem = self.conv_in_dem(sample_dem)
1251
-
1252
- # 2.5 GLIGEN position net
1253
- if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
1254
- cross_attention_kwargs = cross_attention_kwargs.copy()
1255
- gligen_args = cross_attention_kwargs.pop("gligen")
1256
- cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
1257
-
1258
- # 3. down
1259
- # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
1260
- # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
1261
- if cross_attention_kwargs is not None:
1262
- cross_attention_kwargs = cross_attention_kwargs.copy()
1263
- lora_scale = cross_attention_kwargs.pop("scale", 1.0)
1264
- else:
1265
- lora_scale = 1.0
1266
-
1267
- if USE_PEFT_BACKEND:
1268
- # weight the lora layers by setting `lora_scale` for each PEFT layer
1269
- scale_lora_layers(self, lora_scale)
1270
-
1271
- is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
1272
- # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
1273
- is_adapter = down_intrablock_additional_residuals is not None
1274
- if (down_intrablock_additional_residuals is not None) or is_adapter:
1275
- raise NotImplementedError("additional_residuals")
1276
-
1277
-
1278
- # go through the heads
1279
- head_img_res_sample = (sample_img,)
1280
- # RGB head
1281
- if hasattr(self.head_img, "has_cross_attention") and self.head_img.has_cross_attention:
1282
- # For t2i-adapter CrossAttnDownBlock2D
1283
- additional_residuals = {}
1284
- sample_img, res_samples_img = self.head_img(
1285
- hidden_states=sample_img,
1286
- temb=emb,
1287
- encoder_hidden_states=encoder_hidden_states,
1288
- attention_mask=attention_mask,
1289
- cross_attention_kwargs=cross_attention_kwargs,
1290
- encoder_attention_mask=encoder_attention_mask,
1291
- **additional_residuals,
1292
- )
1293
- else:
1294
- sample_img, res_samples_img = self.head_img(hidden_states=sample, temb=emb)
1295
- head_img_res_sample += res_samples_img[:2]
1296
-
1297
-
1298
-
1299
- head_dem_res_sample = (sample_dem,)
1300
- # DEM head
1301
- if hasattr(self.head_dem, "has_cross_attention") and self.head_dem.has_cross_attention:
1302
- # For t2i-adapter CrossAttnDownBlock2D
1303
- additional_residuals = {}
1304
-
1305
- sample_dem, res_samples_dem = self.head_dem(
1306
- hidden_states=sample_dem,
1307
- temb=emb,
1308
- encoder_hidden_states=encoder_hidden_states,
1309
- attention_mask=attention_mask,
1310
- cross_attention_kwargs=cross_attention_kwargs,
1311
- encoder_attention_mask=encoder_attention_mask,
1312
- **additional_residuals,
1313
- )
1314
- else:
1315
- # sample_dem, res_samples_dem = self.head_dem(hidden_states=sample, temb=emb)
1316
- sample_dem, res_samples_dem = self.head_img(hidden_states=sample, temb=emb) # shared weights
1317
-
1318
- head_dem_res_sample += res_samples_dem[:2]
1319
-
1320
- #average the two heads and pass them through the down blocks
1321
- sample = (sample_img + sample_dem) / 2
1322
- #####
1323
- res_samples_img_dem = (res_samples_img[2] + res_samples_dem[2]) / 2
1324
- down_block_res_samples = (res_samples_img_dem,)
1325
-
1326
-
1327
- for downsample_block in self.down_blocks:
1328
- if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
1329
- # For t2i-adapter CrossAttnDownBlock2D
1330
- additional_residuals = {}
1331
- if is_adapter and len(down_intrablock_additional_residuals) > 0:
1332
- additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
1333
-
1334
- sample, res_samples = downsample_block(
1335
- hidden_states=sample,
1336
- temb=emb,
1337
- encoder_hidden_states=encoder_hidden_states,
1338
- attention_mask=attention_mask,
1339
- cross_attention_kwargs=cross_attention_kwargs,
1340
- encoder_attention_mask=encoder_attention_mask,
1341
- **additional_residuals,
1342
- )
1343
- else:
1344
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
1345
- if is_adapter and len(down_intrablock_additional_residuals) > 0:
1346
- sample += down_intrablock_additional_residuals.pop(0)
1347
-
1348
- down_block_res_samples += res_samples
1349
-
1350
- if is_controlnet:
1351
- new_down_block_res_samples = ()
1352
-
1353
- for down_block_res_sample, down_block_additional_residual in zip(
1354
- down_block_res_samples, down_block_additional_residuals
1355
- ):
1356
- down_block_res_sample = down_block_res_sample + down_block_additional_residual
1357
- new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1358
-
1359
- down_block_res_samples = new_down_block_res_samples
1360
-
1361
-
1362
- # 4. mid
1363
- if self.mid_block is not None:
1364
- if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
1365
- sample = self.mid_block(
1366
- sample,
1367
- emb,
1368
- encoder_hidden_states=encoder_hidden_states,
1369
- attention_mask=attention_mask,
1370
- cross_attention_kwargs=cross_attention_kwargs,
1371
- encoder_attention_mask=encoder_attention_mask,
1372
- )
1373
- else:
1374
- sample = self.mid_block(sample, emb)
1375
-
1376
- # To support T2I-Adapter-XL
1377
- if (
1378
- is_adapter
1379
- and len(down_intrablock_additional_residuals) > 0
1380
- and sample.shape == down_intrablock_additional_residuals[0].shape
1381
- ):
1382
- sample += down_intrablock_additional_residuals.pop(0)
1383
-
1384
- if is_controlnet:
1385
- sample = sample + mid_block_additional_residual
1386
-
1387
- # 5. up
1388
- for i, upsample_block in enumerate(self.up_blocks):
1389
-
1390
- res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
1391
- down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
1392
-
1393
- # if we have not reached the final block and need to forward the
1394
- # upsample size, we do it here
1395
- if forward_upsample_size:
1396
- upsample_size = down_block_res_samples[-1].shape[2:]
1397
- if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
1398
- sample = upsample_block(
1399
- hidden_states=sample,
1400
- temb=emb,
1401
- res_hidden_states_tuple=res_samples,
1402
- encoder_hidden_states=encoder_hidden_states,
1403
- cross_attention_kwargs=cross_attention_kwargs,
1404
- upsample_size=upsample_size,
1405
- attention_mask=attention_mask,
1406
- encoder_attention_mask=encoder_attention_mask,
1407
- )
1408
-
1409
- else:
1410
- sample = upsample_block(
1411
- hidden_states=sample,
1412
- temb=emb,
1413
- res_hidden_states_tuple=res_samples,
1414
- upsample_size=upsample_size)
1415
-
1416
-
1417
- # go through each head
1418
-
1419
- sample_img = sample
1420
-
1421
- if hasattr(self.head_out_img, "has_cross_attention") and self.head_out_img.has_cross_attention:
1422
- sample_img = self.head_out_img(
1423
- hidden_states=sample_img,
1424
- temb=emb,
1425
- res_hidden_states_tuple=head_img_res_sample,
1426
- encoder_hidden_states=encoder_hidden_states,
1427
- cross_attention_kwargs=cross_attention_kwargs,
1428
- upsample_size=upsample_size,
1429
- attention_mask=attention_mask,
1430
- encoder_attention_mask=encoder_attention_mask,
1431
- )
1432
- else:
1433
- sample_img = self.head_out_img(sample_img,
1434
- hidden_states=sample,
1435
- temb=emb,
1436
- res_hidden_states_tuple=head_img_res_sample,
1437
- upsample_size=upsample_size,
1438
- )
1439
- if self.conv_norm_out_img:
1440
- sample_img = self.conv_norm_out_img(sample_img)
1441
- sample_img = self.conv_act(sample_img)
1442
- sample_img = self.conv_out_img(sample_img)
1443
-
1444
- sample_dem = sample
1445
-
1446
- if hasattr(self.head_out_dem, "has_cross_attention") and self.head_out_dem.has_cross_attention:
1447
- sample_dem = self.head_out_dem(
1448
- hidden_states=sample_dem,
1449
- temb=emb,
1450
- res_hidden_states_tuple=head_dem_res_sample,
1451
- encoder_hidden_states=encoder_hidden_states,
1452
- cross_attention_kwargs=cross_attention_kwargs,
1453
- upsample_size=upsample_size,
1454
- attention_mask=attention_mask,
1455
- encoder_attention_mask=encoder_attention_mask,
1456
- )
1457
- else:
1458
- sample_dem = self.head_out_dem(sample_dem,
1459
- hidden_states=sample,
1460
- temb=emb,
1461
- res_hidden_states_tuple=head_dem_res_sample,
1462
- upsample_size=upsample_size,
1463
- )
1464
-
1465
- if self.conv_norm_out_dem:
1466
- sample_dem = self.conv_norm_out_dem(sample_dem)
1467
- sample_dem = self.conv_act(sample_dem)
1468
- sample_dem = self.conv_out_dem(sample_dem)
1469
-
1470
- sample = torch.cat([sample_img,sample_dem],dim=1)
1471
-
1472
- if USE_PEFT_BACKEND:
1473
- # remove `lora_scale` from each PEFT layer
1474
- unscale_lora_layers(self, lora_scale)
1475
-
1476
- if not return_dict:
1477
- return (sample,)
1478
-
1479
- return UNet2DConditionOutput(sample=sample)
1480
-
1481
-
1482
-
1483
- def load_weights_from_pretrained(pretrain_model,model_dem):
1484
- dem_state_dict = model_dem.state_dict()
1485
- for name, param in pretrain_model.named_parameters():
1486
- block = name.split(".")[0]
1487
- if block == "conv_in":
1488
- new_name_img = name.replace("conv_in","conv_in_img")
1489
- dem_state_dict[new_name_img] = param
1490
- new_name_dem = name.replace("conv_in","conv_in_dem")
1491
- dem_state_dict[new_name_dem] = param
1492
- if block == "down_blocks":
1493
- block_num = int(name.split(".")[1])
1494
- if block_num == 0:
1495
- new_name_img = name.replace("down_blocks.0","head_img")
1496
- dem_state_dict[new_name_img] = param
1497
- new_name_dem = name.replace("down_blocks.0","head_dem")
1498
- dem_state_dict[new_name_dem] = param
1499
- elif block_num > 0:
1500
- new_name = name.replace(f"down_blocks.{block_num}",f"down_blocks.{block_num-1}")
1501
- dem_state_dict[new_name] = param
1502
- if block == "mid_block":
1503
- dem_state_dict[name] = param
1504
- if block == "time_embedding":
1505
- dem_state_dict[name] = param
1506
- if block == "up_blocks":
1507
- block_num = int(name.split(".")[1])
1508
- if block_num == 3:
1509
- new_name = name.replace("up_blocks.3","head_out_img")
1510
- dem_state_dict[new_name] = param
1511
- new_name = name.replace("up_blocks.3","head_out_dem")
1512
- dem_state_dict[new_name] = param
1513
- else:
1514
- dem_state_dict[name] = param
1515
- if block == "conv_out":
1516
- new_name = name.replace("conv_out","conv_out_img")
1517
- dem_state_dict[new_name] = param
1518
- new_name = name.replace("conv_out","conv_out_dem")
1519
- dem_state_dict[new_name] = param
1520
- if block == "conv_norm_out":
1521
- new_name = name.replace("conv_norm_out","conv_norm_out_img")
1522
- dem_state_dict[new_name] = param
1523
- new_name = name.replace("conv_norm_out","conv_norm_out_dem")
1524
- dem_state_dict[new_name] = param
1525
-
1526
- model_dem.load_state_dict(dem_state_dict)
1527
-
1528
- return model_dem
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/.ipynb_checkpoints/pipeline_terrain-checkpoint.py DELETED
@@ -1,1057 +0,0 @@
1
- ###########################################################################
2
- # References:
3
- # https://github.com/huggingface/diffusers/
4
- ###########################################################################
5
-
6
- # Unless required by applicable law or agreed to in writing, software
7
- # distributed under the License is distributed on an "AS IS" BASIS,
8
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
- # See the License for the specific language governing permissions and
10
- import inspect
11
- from typing import Any, Callable, Dict, List, Optional, Union
12
-
13
- import torch
14
- from packaging import version
15
- from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
16
-
17
- from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
18
- from diffusers.configuration_utils import FrozenDict
19
- from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
20
- from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
21
- from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
22
- from diffusers.models.lora import adjust_lora_scale_text_encoder
23
- from diffusers.schedulers import KarrasDiffusionSchedulers
24
- from diffusers.utils import (
25
- USE_PEFT_BACKEND,
26
- deprecate,
27
- is_torch_xla_available,
28
- logging,
29
- replace_example_docstring,
30
- scale_lora_layers,
31
- unscale_lora_layers,
32
- )
33
- from diffusers.utils.torch_utils import randn_tensor
34
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
35
- from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
36
- from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
37
-
38
-
39
- if is_torch_xla_available():
40
- import torch_xla.core.xla_model as xm
41
-
42
- XLA_AVAILABLE = True
43
- else:
44
- XLA_AVAILABLE = False
45
-
46
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
47
-
48
- EXAMPLE_DOC_STRING = """
49
- Examples:
50
- ```py
51
- >>> import torch
52
- >>> from diffusers import StableDiffusionPipeline
53
-
54
- >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
55
- >>> pipe = pipe.to("cuda")
56
-
57
- >>> prompt = "a photo of an astronaut riding a horse on mars"
58
- >>> image = pipe(prompt).images[0]
59
- ```
60
- """
61
-
62
-
63
- def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
64
- """
65
- Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
66
- Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
67
- """
68
- std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
69
- std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
70
- # rescale the results from guidance (fixes overexposure)
71
- noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
72
- # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
73
- noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
74
- return noise_cfg
75
-
76
-
77
- def retrieve_timesteps(
78
- scheduler,
79
- num_inference_steps: Optional[int] = None,
80
- device: Optional[Union[str, torch.device]] = None,
81
- timesteps: Optional[List[int]] = None,
82
- sigmas: Optional[List[float]] = None,
83
- **kwargs,
84
- ):
85
- """
86
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
87
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
88
-
89
- Args:
90
- scheduler (`SchedulerMixin`):
91
- The scheduler to get timesteps from.
92
- num_inference_steps (`int`):
93
- The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
94
- must be `None`.
95
- device (`str` or `torch.device`, *optional*):
96
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
97
- timesteps (`List[int]`, *optional*):
98
- Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
99
- `num_inference_steps` and `sigmas` must be `None`.
100
- sigmas (`List[float]`, *optional*):
101
- Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
102
- `num_inference_steps` and `timesteps` must be `None`.
103
-
104
- Returns:
105
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
106
- second element is the number of inference steps.
107
- """
108
- if timesteps is not None and sigmas is not None:
109
- raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
110
- if timesteps is not None:
111
- accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
112
- if not accepts_timesteps:
113
- raise ValueError(
114
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
115
- f" timestep schedules. Please check whether you are using the correct scheduler."
116
- )
117
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
118
- timesteps = scheduler.timesteps
119
- num_inference_steps = len(timesteps)
120
- elif sigmas is not None:
121
- accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
122
- if not accept_sigmas:
123
- raise ValueError(
124
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
125
- f" sigmas schedules. Please check whether you are using the correct scheduler."
126
- )
127
- scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
128
- timesteps = scheduler.timesteps
129
- num_inference_steps = len(timesteps)
130
- else:
131
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
132
- timesteps = scheduler.timesteps
133
- return timesteps, num_inference_steps
134
-
135
-
136
- class TerrainDiffusionPipeline(
137
- DiffusionPipeline,
138
- StableDiffusionMixin,
139
- TextualInversionLoaderMixin,
140
- StableDiffusionLoraLoaderMixin,
141
- IPAdapterMixin,
142
- FromSingleFileMixin,
143
- ):
144
- r"""
145
- Pipeline for text-to-image generation using Stable Diffusion.
146
-
147
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
148
- implemented for all pipelines (downloading, saving, running on a particular device, etc.).
149
-
150
- The pipeline also inherits the following loading methods:
151
- - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
152
- - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
153
- - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
154
- - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
155
- - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
156
-
157
- Args:
158
- vae ([`AutoencoderKL`]):
159
- Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
160
- text_encoder ([`~transformers.CLIPTextModel`]):
161
- Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
162
- tokenizer ([`~transformers.CLIPTokenizer`]):
163
- A `CLIPTokenizer` to tokenize text.
164
- unet ([`UNet2DConditionModel`]):
165
- A `UNet2DConditionModel` to denoise the encoded image latents.
166
- scheduler ([`SchedulerMixin`]):
167
- A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
168
- [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
169
- safety_checker ([`StableDiffusionSafetyChecker`]):
170
- Classification module that estimates whether generated images could be considered offensive or harmful.
171
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
172
- about a model's potential harms.
173
- feature_extractor ([`~transformers.CLIPImageProcessor`]):
174
- A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
175
- """
176
-
177
- model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
178
- _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
179
- _exclude_from_cpu_offload = ["safety_checker"]
180
- _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
181
-
182
- def __init__(
183
- self,
184
- vae: AutoencoderKL,
185
- text_encoder: CLIPTextModel,
186
- tokenizer: CLIPTokenizer,
187
- unet: UNet2DConditionModel,
188
- scheduler: KarrasDiffusionSchedulers,
189
- safety_checker: StableDiffusionSafetyChecker,
190
- feature_extractor: CLIPImageProcessor,
191
- image_encoder: CLIPVisionModelWithProjection = None,
192
- requires_safety_checker: bool = True,
193
- ):
194
- super().__init__()
195
-
196
- if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
197
- deprecation_message = (
198
- f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
199
- f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
200
- "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
201
- " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
202
- " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
203
- " file"
204
- )
205
- deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
206
- new_config = dict(scheduler.config)
207
- new_config["steps_offset"] = 1
208
- scheduler._internal_dict = FrozenDict(new_config)
209
-
210
- if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
211
- deprecation_message = (
212
- f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
213
- " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
214
- " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
215
- " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
216
- " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
217
- )
218
- deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
219
- new_config = dict(scheduler.config)
220
- new_config["clip_sample"] = False
221
- scheduler._internal_dict = FrozenDict(new_config)
222
-
223
- if safety_checker is None and requires_safety_checker:
224
- logger.warning(
225
- f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
226
- " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
227
- " results in services or applications open to the public. Both the diffusers team and Hugging Face"
228
- " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
229
- " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
230
- " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
231
- )
232
-
233
- if safety_checker is not None and feature_extractor is None:
234
- raise ValueError(
235
- "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
236
- " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
237
- )
238
-
239
- is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
240
- version.parse(unet.config._diffusers_version).base_version
241
- ) < version.parse("0.9.0.dev0")
242
- is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
243
- if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
244
- deprecation_message = (
245
- "The configuration file of the unet has set the default `sample_size` to smaller than"
246
- " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
247
- " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
248
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
249
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
250
- " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
251
- " in the config might lead to incorrect results in future versions. If you have downloaded this"
252
- " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
253
- " the `unet/config.json` file"
254
- )
255
- deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
256
- new_config = dict(unet.config)
257
- new_config["sample_size"] = 64
258
- unet._internal_dict = FrozenDict(new_config)
259
-
260
- self.register_modules(
261
- vae=vae,
262
- text_encoder=text_encoder,
263
- tokenizer=tokenizer,
264
- unet=unet,
265
- scheduler=scheduler,
266
- safety_checker=safety_checker,
267
- feature_extractor=feature_extractor,
268
- image_encoder=image_encoder,
269
- )
270
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
271
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
272
- self.register_to_config(requires_safety_checker=requires_safety_checker)
273
-
274
- def _encode_prompt(
275
- self,
276
- prompt,
277
- device,
278
- num_images_per_prompt,
279
- do_classifier_free_guidance,
280
- negative_prompt=None,
281
- prompt_embeds: Optional[torch.Tensor] = None,
282
- negative_prompt_embeds: Optional[torch.Tensor] = None,
283
- lora_scale: Optional[float] = None,
284
- **kwargs,
285
- ):
286
- deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
287
- deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
288
-
289
- prompt_embeds_tuple = self.encode_prompt(
290
- prompt=prompt,
291
- device=device,
292
- num_images_per_prompt=num_images_per_prompt,
293
- do_classifier_free_guidance=do_classifier_free_guidance,
294
- negative_prompt=negative_prompt,
295
- prompt_embeds=prompt_embeds,
296
- negative_prompt_embeds=negative_prompt_embeds,
297
- lora_scale=lora_scale,
298
- **kwargs,
299
- )
300
-
301
- # concatenate for backwards comp
302
- prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
303
-
304
- return prompt_embeds
305
-
306
- def encode_prompt(
307
- self,
308
- prompt,
309
- device,
310
- num_images_per_prompt,
311
- do_classifier_free_guidance,
312
- negative_prompt=None,
313
- prompt_embeds: Optional[torch.Tensor] = None,
314
- negative_prompt_embeds: Optional[torch.Tensor] = None,
315
- lora_scale: Optional[float] = None,
316
- clip_skip: Optional[int] = None,
317
- ):
318
- r"""
319
- Encodes the prompt into text encoder hidden states.
320
-
321
- Args:
322
- prompt (`str` or `List[str]`, *optional*):
323
- prompt to be encoded
324
- device: (`torch.device`):
325
- torch device
326
- num_images_per_prompt (`int`):
327
- number of images that should be generated per prompt
328
- do_classifier_free_guidance (`bool`):
329
- whether to use classifier free guidance or not
330
- negative_prompt (`str` or `List[str]`, *optional*):
331
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
332
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
333
- less than `1`).
334
- prompt_embeds (`torch.Tensor`, *optional*):
335
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
336
- provided, text embeddings will be generated from `prompt` input argument.
337
- negative_prompt_embeds (`torch.Tensor`, *optional*):
338
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
339
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
340
- argument.
341
- lora_scale (`float`, *optional*):
342
- A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
343
- clip_skip (`int`, *optional*):
344
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
345
- the output of the pre-final layer will be used for computing the prompt embeddings.
346
- """
347
- # set lora scale so that monkey patched LoRA
348
- # function of text encoder can correctly access it
349
- if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
350
- self._lora_scale = lora_scale
351
-
352
- # dynamically adjust the LoRA scale
353
- if not USE_PEFT_BACKEND:
354
- adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
355
- else:
356
- scale_lora_layers(self.text_encoder, lora_scale)
357
-
358
- if prompt is not None and isinstance(prompt, str):
359
- batch_size = 1
360
- elif prompt is not None and isinstance(prompt, list):
361
- batch_size = len(prompt)
362
- else:
363
- batch_size = prompt_embeds.shape[0]
364
-
365
- if prompt_embeds is None:
366
- # textual inversion: process multi-vector tokens if necessary
367
- if isinstance(self, TextualInversionLoaderMixin):
368
- prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
369
-
370
- text_inputs = self.tokenizer(
371
- prompt,
372
- padding="max_length",
373
- max_length=self.tokenizer.model_max_length,
374
- truncation=True,
375
- return_tensors="pt",
376
- )
377
- text_input_ids = text_inputs.input_ids
378
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
379
-
380
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
381
- text_input_ids, untruncated_ids
382
- ):
383
- removed_text = self.tokenizer.batch_decode(
384
- untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
385
- )
386
- logger.warning(
387
- "The following part of your input was truncated because CLIP can only handle sequences up to"
388
- f" {self.tokenizer.model_max_length} tokens: {removed_text}"
389
- )
390
-
391
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
392
- attention_mask = text_inputs.attention_mask.to(device)
393
- else:
394
- attention_mask = None
395
-
396
- if clip_skip is None:
397
- prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
398
- prompt_embeds = prompt_embeds[0]
399
- else:
400
- prompt_embeds = self.text_encoder(
401
- text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
402
- )
403
- # Access the `hidden_states` first, that contains a tuple of
404
- # all the hidden states from the encoder layers. Then index into
405
- # the tuple to access the hidden states from the desired layer.
406
- prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
407
- # We also need to apply the final LayerNorm here to not mess with the
408
- # representations. The `last_hidden_states` that we typically use for
409
- # obtaining the final prompt representations passes through the LayerNorm
410
- # layer.
411
- prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
412
-
413
- if self.text_encoder is not None:
414
- prompt_embeds_dtype = self.text_encoder.dtype
415
- elif self.unet is not None:
416
- prompt_embeds_dtype = self.unet.dtype
417
- else:
418
- prompt_embeds_dtype = prompt_embeds.dtype
419
-
420
- prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
421
-
422
- bs_embed, seq_len, _ = prompt_embeds.shape
423
- # duplicate text embeddings for each generation per prompt, using mps friendly method
424
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
425
- prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
426
-
427
- # get unconditional embeddings for classifier free guidance
428
- if do_classifier_free_guidance and negative_prompt_embeds is None:
429
- uncond_tokens: List[str]
430
- if negative_prompt is None:
431
- uncond_tokens = [""] * batch_size
432
- elif prompt is not None and type(prompt) is not type(negative_prompt):
433
- raise TypeError(
434
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
435
- f" {type(prompt)}."
436
- )
437
- elif isinstance(negative_prompt, str):
438
- uncond_tokens = [negative_prompt]
439
- elif batch_size != len(negative_prompt):
440
- raise ValueError(
441
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
442
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
443
- " the batch size of `prompt`."
444
- )
445
- else:
446
- uncond_tokens = negative_prompt
447
-
448
- # textual inversion: process multi-vector tokens if necessary
449
- if isinstance(self, TextualInversionLoaderMixin):
450
- uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
451
-
452
- max_length = prompt_embeds.shape[1]
453
- uncond_input = self.tokenizer(
454
- uncond_tokens,
455
- padding="max_length",
456
- max_length=max_length,
457
- truncation=True,
458
- return_tensors="pt",
459
- )
460
-
461
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
462
- attention_mask = uncond_input.attention_mask.to(device)
463
- else:
464
- attention_mask = None
465
-
466
- negative_prompt_embeds = self.text_encoder(
467
- uncond_input.input_ids.to(device),
468
- attention_mask=attention_mask,
469
- )
470
- negative_prompt_embeds = negative_prompt_embeds[0]
471
-
472
- if do_classifier_free_guidance:
473
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
474
- seq_len = negative_prompt_embeds.shape[1]
475
-
476
- negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
477
-
478
- negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
479
- negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
480
-
481
- if self.text_encoder is not None:
482
- if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
483
- # Retrieve the original scale by scaling back the LoRA layers
484
- unscale_lora_layers(self.text_encoder, lora_scale)
485
-
486
- return prompt_embeds, negative_prompt_embeds
487
-
488
- def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
489
- dtype = next(self.image_encoder.parameters()).dtype
490
-
491
- if not isinstance(image, torch.Tensor):
492
- image = self.feature_extractor(image, return_tensors="pt").pixel_values
493
-
494
- image = image.to(device=device, dtype=dtype)
495
- if output_hidden_states:
496
- image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
497
- image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
498
- uncond_image_enc_hidden_states = self.image_encoder(
499
- torch.zeros_like(image), output_hidden_states=True
500
- ).hidden_states[-2]
501
- uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
502
- num_images_per_prompt, dim=0
503
- )
504
- return image_enc_hidden_states, uncond_image_enc_hidden_states
505
- else:
506
- image_embeds = self.image_encoder(image).image_embeds
507
- image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
508
- uncond_image_embeds = torch.zeros_like(image_embeds)
509
-
510
- return image_embeds, uncond_image_embeds
511
-
512
- def prepare_ip_adapter_image_embeds(
513
- self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
514
- ):
515
- image_embeds = []
516
- if do_classifier_free_guidance:
517
- negative_image_embeds = []
518
- if ip_adapter_image_embeds is None:
519
- if not isinstance(ip_adapter_image, list):
520
- ip_adapter_image = [ip_adapter_image]
521
-
522
- if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
523
- raise ValueError(
524
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
525
- )
526
-
527
- for single_ip_adapter_image, image_proj_layer in zip(
528
- ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
529
- ):
530
- output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
531
- single_image_embeds, single_negative_image_embeds = self.encode_image(
532
- single_ip_adapter_image, device, 1, output_hidden_state
533
- )
534
-
535
- image_embeds.append(single_image_embeds[None, :])
536
- if do_classifier_free_guidance:
537
- negative_image_embeds.append(single_negative_image_embeds[None, :])
538
- else:
539
- for single_image_embeds in ip_adapter_image_embeds:
540
- if do_classifier_free_guidance:
541
- single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
542
- negative_image_embeds.append(single_negative_image_embeds)
543
- image_embeds.append(single_image_embeds)
544
-
545
- ip_adapter_image_embeds = []
546
- for i, single_image_embeds in enumerate(image_embeds):
547
- single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
548
- if do_classifier_free_guidance:
549
- single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
550
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
551
-
552
- single_image_embeds = single_image_embeds.to(device=device)
553
- ip_adapter_image_embeds.append(single_image_embeds)
554
-
555
- return ip_adapter_image_embeds
556
-
557
-
558
- def decode_latents(self, latents):
559
- deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
560
- deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
561
-
562
- latents = 1 / self.vae.config.scaling_factor * latents
563
- image = self.vae.decode(latents, return_dict=False)[0]
564
- image = (image / 2 + 0.5).clamp(0, 1)
565
- # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
566
- image = image.cpu().permute(0, 2, 3, 1).float().numpy()
567
- return image
568
-
569
- def prepare_extra_step_kwargs(self, generator, eta):
570
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
571
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
572
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
573
- # and should be between [0, 1]
574
-
575
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
576
- extra_step_kwargs = {}
577
- if accepts_eta:
578
- extra_step_kwargs["eta"] = eta
579
-
580
- # check if the scheduler accepts generator
581
- accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
582
- if accepts_generator:
583
- extra_step_kwargs["generator"] = generator
584
- return extra_step_kwargs
585
-
586
- def check_inputs(
587
- self,
588
- prompt,
589
- height,
590
- width,
591
- callback_steps,
592
- negative_prompt=None,
593
- prompt_embeds=None,
594
- negative_prompt_embeds=None,
595
- ip_adapter_image=None,
596
- ip_adapter_image_embeds=None,
597
- callback_on_step_end_tensor_inputs=None,
598
- ):
599
- if height % 8 != 0 or width % 8 != 0:
600
- raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
601
-
602
- if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
603
- raise ValueError(
604
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
605
- f" {type(callback_steps)}."
606
- )
607
- if callback_on_step_end_tensor_inputs is not None and not all(
608
- k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
609
- ):
610
- raise ValueError(
611
- f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
612
- )
613
-
614
- if prompt is not None and prompt_embeds is not None:
615
- raise ValueError(
616
- f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
617
- " only forward one of the two."
618
- )
619
- elif prompt is None and prompt_embeds is None:
620
- raise ValueError(
621
- "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
622
- )
623
- elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
624
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
625
-
626
- if negative_prompt is not None and negative_prompt_embeds is not None:
627
- raise ValueError(
628
- f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
629
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
630
- )
631
-
632
- if prompt_embeds is not None and negative_prompt_embeds is not None:
633
- if prompt_embeds.shape != negative_prompt_embeds.shape:
634
- raise ValueError(
635
- "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
636
- f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
637
- f" {negative_prompt_embeds.shape}."
638
- )
639
-
640
- if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
641
- raise ValueError(
642
- "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
643
- )
644
-
645
- if ip_adapter_image_embeds is not None:
646
- if not isinstance(ip_adapter_image_embeds, list):
647
- raise ValueError(
648
- f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
649
- )
650
- elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
651
- raise ValueError(
652
- f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
653
- )
654
-
655
- def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
656
- shape = (
657
- batch_size,
658
- num_channels_latents,
659
- int(height) // self.vae_scale_factor,
660
- int(width) // self.vae_scale_factor,
661
- )
662
- if isinstance(generator, list) and len(generator) != batch_size:
663
- raise ValueError(
664
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
665
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
666
- )
667
-
668
- if latents is None:
669
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
670
- else:
671
- latents = latents.to(device)
672
-
673
- # scale the initial noise by the standard deviation required by the scheduler
674
- latents = latents * self.scheduler.init_noise_sigma
675
- return latents
676
-
677
- # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
678
- def get_guidance_scale_embedding(
679
- self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
680
- ) -> torch.Tensor:
681
- """
682
- See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
683
-
684
- Args:
685
- w (`torch.Tensor`):
686
- Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
687
- embedding_dim (`int`, *optional*, defaults to 512):
688
- Dimension of the embeddings to generate.
689
- dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
690
- Data type of the generated embeddings.
691
-
692
- Returns:
693
- `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
694
- """
695
- assert len(w.shape) == 1
696
- w = w * 1000.0
697
-
698
- half_dim = embedding_dim // 2
699
- emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
700
- emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
701
- emb = w.to(dtype)[:, None] * emb[None, :]
702
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
703
- if embedding_dim % 2 == 1: # zero pad
704
- emb = torch.nn.functional.pad(emb, (0, 1))
705
- assert emb.shape == (w.shape[0], embedding_dim)
706
- return emb
707
-
708
- @property
709
- def guidance_scale(self):
710
- return self._guidance_scale
711
-
712
- @property
713
- def guidance_rescale(self):
714
- return self._guidance_rescale
715
-
716
- @property
717
- def clip_skip(self):
718
- return self._clip_skip
719
-
720
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
721
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
722
- # corresponds to doing no classifier free guidance.
723
- @property
724
- def do_classifier_free_guidance(self):
725
- return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
726
-
727
- @property
728
- def cross_attention_kwargs(self):
729
- return self._cross_attention_kwargs
730
-
731
- @property
732
- def num_timesteps(self):
733
- return self._num_timesteps
734
-
735
- @property
736
- def interrupt(self):
737
- return self._interrupt
738
-
739
- def decode_rgbd(self, latents,generator,output_type="np"):
740
- dem_latents = latents[:,4:,:,:]
741
- img_latents = latents[:,:4,:,:]
742
- image = self.vae.decode(img_latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
743
- 0
744
- ]
745
- dem = self.vae.decode(dem_latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
746
- 0
747
- ]
748
- do_denormalize = [True] * image.shape[0]
749
- image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
750
- dem = self.image_processor.postprocess(dem, output_type=output_type, do_denormalize=do_denormalize)
751
- return image,dem
752
-
753
- @torch.no_grad()
754
- @replace_example_docstring(EXAMPLE_DOC_STRING)
755
- def __call__(
756
- self,
757
- prompt: Union[str, List[str]] = None,
758
- height: Optional[int] = None,
759
- width: Optional[int] = None,
760
- num_inference_steps: int = 50,
761
- timesteps: List[int] = None,
762
- sigmas: List[float] = None,
763
- guidance_scale: float = 7.5,
764
- negative_prompt: Optional[Union[str, List[str]]] = None,
765
- num_images_per_prompt: Optional[int] = 1,
766
- eta: float = 0.0,
767
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
768
- latents: Optional[torch.Tensor] = None,
769
- prompt_embeds: Optional[torch.Tensor] = None,
770
- negative_prompt_embeds: Optional[torch.Tensor] = None,
771
- ip_adapter_image: Optional[PipelineImageInput] = None,
772
- ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
773
- output_type: Optional[str] = "np",
774
- return_dict: bool = True,
775
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
776
- guidance_rescale: float = 0.0,
777
- clip_skip: Optional[int] = None,
778
- callback_on_step_end: Optional[
779
- Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
780
- ] = None,
781
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
782
- **kwargs,
783
- ):
784
- r"""
785
- The call function to the pipeline for generation.
786
-
787
- Args:
788
- prompt (`str` or `List[str]`, *optional*):
789
- The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
790
- height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
791
- The height in pixels of the generated image.
792
- width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
793
- The width in pixels of the generated image.
794
- num_inference_steps (`int`, *optional*, defaults to 50):
795
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
796
- expense of slower inference.
797
- timesteps (`List[int]`, *optional*):
798
- Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
799
- in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
800
- passed will be used. Must be in descending order.
801
- sigmas (`List[float]`, *optional*):
802
- Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
803
- their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
804
- will be used.
805
- guidance_scale (`float`, *optional*, defaults to 7.5):
806
- A higher guidance scale value encourages the model to generate images closely linked to the text
807
- `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
808
- negative_prompt (`str` or `List[str]`, *optional*):
809
- The prompt or prompts to guide what to not include in image generation. If not defined, you need to
810
- pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
811
- num_images_per_prompt (`int`, *optional*, defaults to 1):
812
- The number of images to generate per prompt.
813
- eta (`float`, *optional*, defaults to 0.0):
814
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
815
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
816
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
817
- A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
818
- generation deterministic.
819
- latents (`torch.Tensor`, *optional*):
820
- Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
821
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
822
- tensor is generated by sampling using the supplied random `generator`.
823
- prompt_embeds (`torch.Tensor`, *optional*):
824
- Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
825
- provided, text embeddings are generated from the `prompt` input argument.
826
- negative_prompt_embeds (`torch.Tensor`, *optional*):
827
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
828
- not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
829
- ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
830
- ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
831
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
832
- IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
833
- contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
834
- provided, embeddings are computed from the `ip_adapter_image` input argument.
835
- output_type (`str`, *optional*, defaults to `"pil"`):
836
- The output format of the generated image. Choose between `PIL.Image` or `np.array`.
837
- return_dict (`bool`, *optional*, defaults to `True`):
838
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
839
- plain tuple.
840
- cross_attention_kwargs (`dict`, *optional*):
841
- A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
842
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
843
- guidance_rescale (`float`, *optional*, defaults to 0.0):
844
- Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
845
- Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
846
- using zero terminal SNR.
847
- clip_skip (`int`, *optional*):
848
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
849
- the output of the pre-final layer will be used for computing the prompt embeddings.
850
- callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
851
- A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
852
- each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
853
- DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
854
- list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
855
- callback_on_step_end_tensor_inputs (`List`, *optional*):
856
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
857
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
858
- `._callback_tensor_inputs` attribute of your pipeline class.
859
-
860
- Examples:
861
-
862
- Returns:
863
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
864
- If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
865
- otherwise a `tuple` is returned where the first element is a list with the generated images and the
866
- second element is a list of `bool`s indicating whether the corresponding generated image contains
867
- "not-safe-for-work" (nsfw) content.
868
- """
869
-
870
- callback = kwargs.pop("callback", None)
871
- callback_steps = kwargs.pop("callback_steps", None)
872
-
873
- if callback is not None:
874
- deprecate(
875
- "callback",
876
- "1.0.0",
877
- "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
878
- )
879
- if callback_steps is not None:
880
- deprecate(
881
- "callback_steps",
882
- "1.0.0",
883
- "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
884
- )
885
-
886
- if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
887
- callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
888
-
889
- # 0. Default height and width to unet
890
- height = height or self.unet.config.sample_size * self.vae_scale_factor
891
- width = width or self.unet.config.sample_size * self.vae_scale_factor
892
- # to deal with lora scaling and other possible forward hooks
893
-
894
- # 1. Check inputs. Raise error if not correct
895
- self.check_inputs(
896
- prompt,
897
- height,
898
- width,
899
- callback_steps,
900
- negative_prompt,
901
- prompt_embeds,
902
- negative_prompt_embeds,
903
- ip_adapter_image,
904
- ip_adapter_image_embeds,
905
- callback_on_step_end_tensor_inputs,
906
- )
907
-
908
- self._guidance_scale = guidance_scale
909
- self._guidance_rescale = guidance_rescale
910
- self._clip_skip = clip_skip
911
- self._cross_attention_kwargs = cross_attention_kwargs
912
- self._interrupt = False
913
-
914
- # 2. Define call parameters
915
- if prompt is not None and isinstance(prompt, str):
916
- batch_size = 1
917
- elif prompt is not None and isinstance(prompt, list):
918
- batch_size = len(prompt)
919
- else:
920
- batch_size = prompt_embeds.shape[0]
921
-
922
- device = self._execution_device
923
-
924
- # 3. Encode input prompt
925
- lora_scale = (
926
- self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
927
- )
928
-
929
- prompt_embeds, negative_prompt_embeds = self.encode_prompt(
930
- prompt,
931
- device,
932
- num_images_per_prompt,
933
- self.do_classifier_free_guidance,
934
- negative_prompt,
935
- prompt_embeds=prompt_embeds,
936
- negative_prompt_embeds=negative_prompt_embeds,
937
- lora_scale=lora_scale,
938
- clip_skip=self.clip_skip,
939
- )
940
-
941
- # For classifier free guidance, we need to do two forward passes.
942
- # Here we concatenate the unconditional and text embeddings into a single batch
943
- # to avoid doing two forward passes
944
- if self.do_classifier_free_guidance:
945
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
946
-
947
- if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
948
- image_embeds = self.prepare_ip_adapter_image_embeds(
949
- ip_adapter_image,
950
- ip_adapter_image_embeds,
951
- device,
952
- batch_size * num_images_per_prompt,
953
- self.do_classifier_free_guidance,
954
- )
955
-
956
- # 4. Prepare timesteps
957
- timesteps, num_inference_steps = retrieve_timesteps(
958
- self.scheduler, num_inference_steps, device, timesteps, sigmas
959
- )
960
-
961
- # 5. Prepare latent variables
962
- num_channels_latents = self.unet.config.in_channels*2
963
- latents = self.prepare_latents(
964
- batch_size * num_images_per_prompt,
965
- num_channels_latents,
966
- height,
967
- width,
968
- prompt_embeds.dtype,
969
- device,
970
- generator,
971
- latents,
972
- )
973
-
974
- # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
975
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
976
-
977
- # 6.1 Add image embeds for IP-Adapter
978
- added_cond_kwargs = (
979
- {"image_embeds": image_embeds}
980
- if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
981
- else None
982
- )
983
-
984
- # 6.2 Optionally get Guidance Scale Embedding
985
- timestep_cond = None
986
- if self.unet.config.time_cond_proj_dim is not None:
987
- guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
988
- timestep_cond = self.get_guidance_scale_embedding(
989
- guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
990
- ).to(device=device, dtype=latents.dtype)
991
-
992
- # 7. Denoising loop
993
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
994
- self._num_timesteps = len(timesteps)
995
- # intermediate_latents = []
996
- with self.progress_bar(total=num_inference_steps) as progress_bar:
997
- for i, t in enumerate(timesteps):
998
- if self.interrupt:
999
- continue
1000
-
1001
- # expand the latents if we are doing classifier free guidance
1002
- latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1003
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1004
-
1005
- # predict the noise residual
1006
- noise_pred = self.unet(
1007
- latent_model_input,
1008
- t,
1009
- encoder_hidden_states=prompt_embeds,
1010
- timestep_cond=timestep_cond,
1011
- cross_attention_kwargs=self.cross_attention_kwargs,
1012
- added_cond_kwargs=added_cond_kwargs,
1013
- return_dict=False,
1014
- )[0]
1015
-
1016
- # perform guidance
1017
- if self.do_classifier_free_guidance:
1018
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1019
- noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1020
-
1021
- if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
1022
- # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1023
- noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
1024
-
1025
- # compute the previous noisy sample x_t -> x_t-1
1026
- scheduler_output = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=True)
1027
- latents = scheduler_output.prev_sample
1028
- # if i % 10 == 0:
1029
- # intermediate_latents.append(scheduler_output.pred_original_sample)
1030
- if callback_on_step_end is not None:
1031
- callback_kwargs = {}
1032
- for k in callback_on_step_end_tensor_inputs:
1033
- callback_kwargs[k] = locals()[k]
1034
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1035
-
1036
- latents = callback_outputs.pop("latents", latents)
1037
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1038
- negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1039
-
1040
- # call the callback, if provided
1041
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1042
- progress_bar.update()
1043
- if callback is not None and i % callback_steps == 0:
1044
- step_idx = i // getattr(self.scheduler, "order", 1)
1045
- callback(step_idx, t, latents)
1046
-
1047
- if XLA_AVAILABLE:
1048
- xm.mark_step()
1049
-
1050
- image,dem = self.decode_rgbd(latents,generator,output_type)
1051
-
1052
- # intermediate = [self.decode_rgbd(latent,generator,output_type)for latent in intermediate_latents]
1053
-
1054
- # Offload all models
1055
- self.maybe_free_model_hooks()
1056
-
1057
- return image,dem
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/.ipynb_checkpoints/utils-checkpoint.py DELETED
@@ -1,59 +0,0 @@
1
- import numpy as np
2
- import trimesh
3
- import tempfile
4
- import torch
5
- from scipy.spatial import Delaunay
6
- from .build_pipe import *
7
-
8
- pipe = build_pipe()
9
-
10
- def generate_terrain(prompt, num_inference_steps, guidance_scale, seed, crop_size, prefix):
11
- """Generates terrain data (RGB and elevation) from a text prompt."""
12
- if prefix and not prefix.endswith(' '):
13
- prefix += ' ' # Ensure prefix ends with a space
14
-
15
- full_prompt = prefix + prompt
16
- generator = torch.Generator("cuda").manual_seed(seed)
17
- image, dem = pipe(full_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator)
18
-
19
- # Center crop the image and dem
20
- h, w, c = image[0].shape
21
- start_h = (h - crop_size) // 2
22
- start_w = (w - crop_size) // 2
23
- end_h = start_h + crop_size
24
- end_w = start_w + crop_size
25
-
26
- cropped_image = image[0][start_h:end_h, start_w:end_w, :]
27
- cropped_dem = dem[0][start_h:end_h, start_w:end_w, :]
28
-
29
- return (255 * cropped_image).astype(np.uint8), 500*cropped_dem.mean(-1)
30
-
31
- def simplify_mesh(mesh, target_face_count):
32
- """Simplifies a mesh using quadric decimation."""
33
- simplified_mesh = mesh.simplify_quadric_decimation(target_face_count)
34
- return simplified_mesh
35
-
36
- def create_3d_mesh(rgb, elevation):
37
- """Creates a 3D mesh from RGB and elevation data."""
38
- x, y = np.meshgrid(np.arange(elevation.shape[1]), np.arange(elevation.shape[0]))
39
- points = np.stack([x.flatten(), y.flatten()], axis=-1)
40
- tri = Delaunay(points)
41
-
42
- vertices = np.stack([x.flatten(), y.flatten(), elevation.flatten()], axis=-1)
43
- faces = tri.simplices
44
-
45
- mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=rgb.reshape(-1, 3))
46
-
47
- #mesh = simplify_mesh(mesh, target_face_count=100)
48
- return mesh
49
-
50
- def generate_and_display(prompt, num_inference_steps, guidance_scale, seed, crop_size, prefix):
51
- """Generates terrain and displays it as a 3D model."""
52
- rgb, elevation = generate_terrain(prompt, num_inference_steps, guidance_scale, seed, crop_size, prefix)
53
- mesh = create_3d_mesh(rgb, elevation)
54
-
55
- with tempfile.NamedTemporaryFile(suffix=".obj", delete=False) as temp_file:
56
- mesh.export(temp_file.name)
57
- file_path = temp_file.name
58
-
59
- return file_path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/utils.py CHANGED
@@ -3,13 +3,14 @@ import trimesh
3
  import tempfile
4
  import torch
5
  from scipy.spatial import Delaunay
 
6
  from .build_pipe import *
7
  import spaces
8
 
9
  pipe = build_pipe()
10
 
11
  @spaces.GPU
12
- def generate_terrain(prompt, num_inference_steps, guidance_scale, seed, crop_size, prefix):
13
  """Generates terrain data (RGB and elevation) from a text prompt."""
14
  if prefix and not prefix.endswith(' '):
15
  prefix += ' ' # Ensure prefix ends with a space
@@ -18,44 +19,96 @@ def generate_terrain(prompt, num_inference_steps, guidance_scale, seed, crop_siz
18
  generator = torch.Generator("cuda").manual_seed(seed)
19
  image, dem = pipe(full_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator)
20
 
21
- # Center crop the image and dem
22
- h, w, c = image[0].shape
23
- start_h = (h - crop_size) // 2
24
- start_w = (w - crop_size) // 2
25
- end_h = start_h + crop_size
26
- end_w = start_w + crop_size
 
 
 
 
 
 
 
27
 
28
- cropped_image = image[0][start_h:end_h, start_w:end_w, :]
29
- cropped_dem = dem[0][start_h:end_h, start_w:end_w, :]
30
 
31
- return (255 * cropped_image).astype(np.uint8), 500*cropped_dem.mean(-1)
 
 
 
 
 
 
 
 
 
 
32
 
33
- def simplify_mesh(mesh, target_face_count):
34
- """Simplifies a mesh using quadric decimation."""
35
- simplified_mesh = mesh.simplify_quadric_decimation(target_face_count)
36
- return simplified_mesh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- def create_3d_mesh(rgb, elevation):
39
- """Creates a 3D mesh from RGB and elevation data."""
40
- x, y = np.meshgrid(np.arange(elevation.shape[1]), np.arange(elevation.shape[0]))
41
- points = np.stack([x.flatten(), y.flatten()], axis=-1)
42
- tri = Delaunay(points)
43
 
44
- vertices = np.stack([x.flatten(), y.flatten(), elevation.flatten()], axis=-1)
45
- faces = tri.simplices
 
 
 
 
 
 
 
 
46
 
47
- mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=rgb.reshape(-1, 3))
 
 
 
 
 
 
 
 
 
48
 
49
- #mesh = simplify_mesh(mesh, target_face_count=100)
50
- return mesh
51
 
52
- def generate_and_display(prompt, num_inference_steps, guidance_scale, seed, crop_size, prefix):
53
- """Generates terrain and displays it as a 3D model."""
54
- rgb, elevation = generate_terrain(prompt, num_inference_steps, guidance_scale, seed, crop_size, prefix)
55
- mesh = create_3d_mesh(rgb, elevation)
 
 
 
 
56
 
57
  with tempfile.NamedTemporaryFile(suffix=".obj", delete=False) as temp_file:
58
  mesh.export(temp_file.name)
59
  file_path = temp_file.name
60
 
61
  return file_path
 
 
 
 
 
 
3
  import tempfile
4
  import torch
5
  from scipy.spatial import Delaunay
6
+ from sklearn.cluster import KMeans
7
  from .build_pipe import *
8
  import spaces
9
 
10
  pipe = build_pipe()
11
 
12
  @spaces.GPU
13
+ def generate_terrain(prompt, num_inference_steps, guidance_scale, seed, prefix, crop_size=None):
14
  """Generates terrain data (RGB and elevation) from a text prompt."""
15
  if prefix and not prefix.endswith(' '):
16
  prefix += ' ' # Ensure prefix ends with a space
 
19
  generator = torch.Generator("cuda").manual_seed(seed)
20
  image, dem = pipe(full_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator)
21
 
22
+ if crop_size is not None:
23
+ # Center crop the image and dem
24
+ h, w, c = image[0].shape
25
+ start_h = (h - crop_size) // 2
26
+ start_w = (w - crop_size) // 2
27
+ end_h = start_h + crop_size
28
+ end_w = start_w + crop_size
29
+
30
+ cropped_image = image[0][start_h:end_h, start_w:end_w, :]
31
+ cropped_dem = dem[0][start_h:end_h, start_w:end_w, :]
32
+ else:
33
+ cropped_image = image[0]
34
+ cropped_dem = dem[0]
35
 
36
+ return (255 * cropped_image).astype(np.uint8), cropped_dem.mean(-1)
 
37
 
38
+ def create_3d_mesh(rgb, elevation, n_clusters=1000):
39
+ """Creates a 3D mesh from RGB and elevation data.
40
+ If n_clusters is 0, generates the full mesh.
41
+ Otherwise, generates a simplified mesh using KMeans clustering with distinct colors.
42
+ """
43
+ rows, cols = elevation.shape
44
+ x, y = np.meshgrid(np.arange(cols), np.arange(rows))
45
+ points_2d = np.stack([x.flatten(), y.flatten()], axis=-1)
46
+ elevation_flat = elevation.flatten()
47
+ points_3d = np.column_stack([points_2d, elevation_flat])
48
+ original_colors = rgb.reshape(-1, 3)
49
 
50
+ if n_clusters <= 0:
51
+ # Generate full mesh without clustering
52
+ vertices = points_3d
53
+ try:
54
+ tri = Delaunay(points_2d)
55
+ faces = tri.simplices
56
+ mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=original_colors)
57
+ return mesh
58
+ except Exception as e:
59
+ print(f"Error during Delaunay triangulation (full mesh): {e}")
60
+ return None
61
+ else:
62
+ n_clusters = min(n_clusters, len(elevation_flat))
63
+ # Apply KMeans clustering for simplification
64
+ kmeans = KMeans(n_clusters=n_clusters, random_state=0, n_init='auto')
65
+ kmeans.fit(points_3d)
66
+ cluster_centers = kmeans.cluster_centers_
67
+ cluster_labels = kmeans.labels_
68
 
69
+ # Use the cluster centers as the simplified vertices
70
+ simplified_vertices = cluster_centers
 
 
 
71
 
72
+ # Perform Delaunay triangulation on the X and Y coordinates of the cluster centers
73
+ simplified_points_2d = simplified_vertices[:, :2]
74
+ try:
75
+ tri = Delaunay(simplified_points_2d)
76
+ faces = tri.simplices
77
+ # Ensure the number of vertices in faces does not exceed the number of simplified vertices
78
+ valid_faces = faces[np.all(faces < len(simplified_vertices), axis=1)]
79
+ except Exception as e:
80
+ print(f"Error during Delaunay triangulation (clustered mesh): {e}")
81
+ return None
82
 
83
+ # Assign a distinct color to each cluster
84
+ unique_labels = np.unique(cluster_labels)
85
+ cluster_colors = {}
86
+ for label in unique_labels:
87
+ cluster_indices = np.where(cluster_labels == label)[0]
88
+ if len(cluster_indices) > 0:
89
+ avg_color = np.mean(original_colors[cluster_indices], axis=0).astype(np.uint8)
90
+ cluster_colors[label] = avg_color
91
+ else:
92
+ cluster_colors[label] = np.array([255, 0, 0], dtype=np.uint8) # Red
93
 
94
+ vertex_colors = np.array([cluster_colors[i] for i in range(n_clusters)])
 
95
 
96
+ # Create the trimesh object
97
+ mesh = trimesh.Trimesh(vertices=simplified_vertices, faces=valid_faces, vertex_colors=vertex_colors)
98
+ return mesh
99
+
100
+ def generate_3d_view_output(prompt, num_inference_steps, guidance_scale, seed, crop_size, vertex_count, prefix):
101
+ rgb, elevation = generate_terrain(prompt, num_inference_steps, guidance_scale, seed, prefix, crop_size)
102
+
103
+ mesh = create_3d_mesh(rgb, 500*elevation, n_clusters=vertex_count)
104
 
105
  with tempfile.NamedTemporaryFile(suffix=".obj", delete=False) as temp_file:
106
  mesh.export(temp_file.name)
107
  file_path = temp_file.name
108
 
109
  return file_path
110
+
111
+ def generate_2d_view_output(prompt, num_inference_steps, guidance_scale, seed, prefix):
112
+ rgb, elevation = generate_terrain(prompt, num_inference_steps, guidance_scale, seed, prefix)
113
+
114
+ return rgb, elevation