Spaces:
Running
on
Zero
Running
on
Zero
mikonvergence
commited on
Commit
·
886e812
1
Parent(s):
ee8d564
First test of backend
Browse files- app.py +11 -5
- requirements.txt +1 -0
- src/backend.py +278 -0
- src/utils.py +2 -2
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
from src.utils import *
|
|
|
4 |
|
5 |
theme = gr.themes.Soft(primary_hue="cyan", secondary_hue="zinc", font=[gr.themes.GoogleFont("Source Sans 3", weights=(400, 600)),'arial'])
|
6 |
|
@@ -9,7 +10,9 @@ with gr.Blocks(theme=theme) as demo:
|
|
9 |
gr.Markdown("# 🗾 COP-GEN-Beta: Unified Generative Modelling of COPernicus Imagery Thumbnails")
|
10 |
gr.Markdown("### Miguel Espinosa, Valerio Marsocci, Yuru Jia, Elliot J. Crowley, Mikolaj Czerkawski")
|
11 |
gr.Markdown('[[Website](https://miquel-espinosa.github.io/cop-gen-beta/)] [[GitHub](https://github.com/miquel-espinosa/COP-GEN-Beta)] [[Model](https://huggingface.co/mespinosami/COP-GEN-Beta)] [[Dataset](https://huggingface.co/Major-TOM)]')
|
12 |
-
|
|
|
|
|
13 |
with gr.Column(elem_classes="abstract"):
|
14 |
|
15 |
with gr.Accordion("Abstract", open=False) as abstract:
|
@@ -48,8 +51,7 @@ with gr.Blocks(theme=theme) as demo:
|
|
48 |
dem_output = gr.Image(label="DEM (Elevation)", interactive=False)
|
49 |
|
50 |
with gr.Accordion("Advanced Options", open=False) as advanced_options:
|
51 |
-
num_inference_steps_slider = gr.Slider(minimum=10, maximum=1000, step=10, value=
|
52 |
-
guidance_scale_slider = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, value=7.5, label="Guidance Scale")
|
53 |
with gr.Row():
|
54 |
seed_number = gr.Number(value=6378, label="Seed")
|
55 |
seed_checkbox = gr.Checkbox(value=True, label="Random")
|
@@ -61,8 +63,12 @@ with gr.Blocks(theme=theme) as demo:
|
|
61 |
|
62 |
generate_button.click(
|
63 |
fn=generate_output,
|
64 |
-
inputs=[s2l1c_input,
|
|
|
|
|
|
|
|
|
65 |
outputs=[s2l1c_output, s2l2a_output, s1rtc_output, dem_output],
|
66 |
)
|
67 |
|
68 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
from src.utils import *
|
4 |
+
from src.backend import *
|
5 |
|
6 |
theme = gr.themes.Soft(primary_hue="cyan", secondary_hue="zinc", font=[gr.themes.GoogleFont("Source Sans 3", weights=(400, 600)),'arial'])
|
7 |
|
|
|
10 |
gr.Markdown("# 🗾 COP-GEN-Beta: Unified Generative Modelling of COPernicus Imagery Thumbnails")
|
11 |
gr.Markdown("### Miguel Espinosa, Valerio Marsocci, Yuru Jia, Elliot J. Crowley, Mikolaj Czerkawski")
|
12 |
gr.Markdown('[[Website](https://miquel-espinosa.github.io/cop-gen-beta/)] [[GitHub](https://github.com/miquel-espinosa/COP-GEN-Beta)] [[Model](https://huggingface.co/mespinosami/COP-GEN-Beta)] [[Dataset](https://huggingface.co/Major-TOM)]')
|
13 |
+
|
14 |
+
gr.Markdown('⚠️ NOTE: This is a protoype Beta model of COP-GEN. It is based on image thumbnails of Major TOM and does not yet support raw source data. The hillshade visualisation is used for elevation. The full model COP-GEN is coming soon.')
|
15 |
+
|
16 |
with gr.Column(elem_classes="abstract"):
|
17 |
|
18 |
with gr.Accordion("Abstract", open=False) as abstract:
|
|
|
51 |
dem_output = gr.Image(label="DEM (Elevation)", interactive=False)
|
52 |
|
53 |
with gr.Accordion("Advanced Options", open=False) as advanced_options:
|
54 |
+
num_inference_steps_slider = gr.Slider(minimum=10, maximum=1000, step=10, value=10, label="Inference Steps")
|
|
|
55 |
with gr.Row():
|
56 |
seed_number = gr.Number(value=6378, label="Seed")
|
57 |
seed_checkbox = gr.Checkbox(value=True, label="Random")
|
|
|
63 |
|
64 |
generate_button.click(
|
65 |
fn=generate_output,
|
66 |
+
inputs=[s2l1c_input, s2l1c_active,
|
67 |
+
s2l2a_input, s2l2a_active,
|
68 |
+
s1rtc_input, s1rtc_active,
|
69 |
+
dem_input, dem_active,
|
70 |
+
num_inference_steps_slider, seed_number, seed_checkbox],
|
71 |
outputs=[s2l1c_output, s2l2a_output, s1rtc_output, dem_output],
|
72 |
)
|
73 |
|
74 |
+
demo.queue().launch(share=True)
|
requirements.txt
CHANGED
@@ -8,3 +8,4 @@ scikit-learn
|
|
8 |
huggingface_hub
|
9 |
transformers==4.51.1
|
10 |
accelerate==1.5.2
|
|
|
|
8 |
huggingface_hub
|
9 |
transformers==4.51.1
|
10 |
accelerate==1.5.2
|
11 |
+
ml_collections
|
src/backend.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import ml_collections
|
6 |
+
from torchvision.utils import save_image, make_grid
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import einops
|
9 |
+
import random
|
10 |
+
import torchvision.transforms as standard_transforms
|
11 |
+
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
hf_hub_download(repo_id="thu-ml/unidiffuser-v1", filename="autoencoder_kl.pth", local_dir='./models')
|
14 |
+
hf_hub_download(repo_id="mespinosami/COP-GEN-Beta", filename="nnet_ema_114000.pth", local_dir='./models')
|
15 |
+
|
16 |
+
import sys
|
17 |
+
sys.path.append('./src/COP-GEN-Beta')
|
18 |
+
|
19 |
+
import libs
|
20 |
+
from dpm_solver_pp import DPM_Solver, NoiseScheduleVP
|
21 |
+
from sample_n_triffuser import set_seed, stable_diffusion_beta_schedule, unpreprocess
|
22 |
+
import utils
|
23 |
+
|
24 |
+
from diffusers import AutoencoderKL
|
25 |
+
from .Triffuser import *
|
26 |
+
|
27 |
+
# Function to load model
|
28 |
+
def load_model(device='cuda'):
|
29 |
+
nnet = Triffuser(num_modalities=4)
|
30 |
+
checkpoint = torch.load('models/nnet_ema_114000.pth', map_location='cuda')
|
31 |
+
nnet.load_state_dict(checkpoint)
|
32 |
+
nnet.to(device)
|
33 |
+
nnet.eval()
|
34 |
+
|
35 |
+
autoencoder = libs.autoencoder.get_model(pretrained_path = "models/autoencoder_kl.pth")
|
36 |
+
autoencoder.to(device)
|
37 |
+
autoencoder.eval()
|
38 |
+
|
39 |
+
return nnet, autoencoder
|
40 |
+
|
41 |
+
print('Loading COP-GEN-Beta model...')
|
42 |
+
nnet, autoencoder = load_model()
|
43 |
+
to_PIL = standard_transforms.ToPILImage()
|
44 |
+
print('[DONE]')
|
45 |
+
|
46 |
+
def get_config(generate_modalities, condition_modalities, seed, num_inference_steps=50):
|
47 |
+
config = ml_collections.ConfigDict()
|
48 |
+
config.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
49 |
+
config.seed = seed
|
50 |
+
config.n_samples = 1
|
51 |
+
config.z_shape = (4, 32, 32) # Shape of the latent vectors
|
52 |
+
config.sample = {
|
53 |
+
'sample_steps': num_inference_steps,
|
54 |
+
'algorithm': "dpm_solver",
|
55 |
+
}
|
56 |
+
# Model config
|
57 |
+
config.num_modalities = 4 # 4 modalities: DEM, S1RTC, S2L1C, S2L2A
|
58 |
+
config.modalities = ['dem', 's1_rtc', 's2_l1c', 's2_l2a']
|
59 |
+
# Network config
|
60 |
+
config.nnet = {
|
61 |
+
'name': 'triffuser_multi_post_ln',
|
62 |
+
'img_size': 32,
|
63 |
+
'in_chans': 4,
|
64 |
+
'patch_size': 2,
|
65 |
+
'embed_dim': 1024,
|
66 |
+
'depth': 20,
|
67 |
+
'num_heads': 16,
|
68 |
+
'mlp_ratio': 4,
|
69 |
+
'qkv_bias': False,
|
70 |
+
'pos_drop_rate': 0.,
|
71 |
+
'drop_rate': 0.,
|
72 |
+
'attn_drop_rate': 0.,
|
73 |
+
'mlp_time_embed': False,
|
74 |
+
'num_modalities': 4,
|
75 |
+
'use_checkpoint': True,
|
76 |
+
}
|
77 |
+
|
78 |
+
# Parse generate and condition modalities
|
79 |
+
config.generate_modalities = generate_modalities
|
80 |
+
config.generate_modalities = sorted(config.generate_modalities, key=lambda x: config.modalities.index(x))
|
81 |
+
config.condition_modalities = condition_modalities if condition_modalities else []
|
82 |
+
config.condition_modalities = sorted(config.condition_modalities, key=lambda x: config.modalities.index(x))
|
83 |
+
config.generate_modalities_mask = [mod in config.generate_modalities for mod in config.modalities]
|
84 |
+
config.condition_modalities_mask = [mod in config.condition_modalities for mod in config.modalities]
|
85 |
+
# Validate modalities
|
86 |
+
valid_modalities = {'s2_l1c', 's2_l2a', 's1_rtc', 'dem'}
|
87 |
+
for mod in config.generate_modalities + config.condition_modalities:
|
88 |
+
if mod not in valid_modalities:
|
89 |
+
raise ValueError(f"Invalid modality: {mod}. Must be one of {valid_modalities}")
|
90 |
+
# Check that generate and condition modalities don't overlap
|
91 |
+
if set(config.generate_modalities) & set(config.condition_modalities):
|
92 |
+
raise ValueError("Generate and condition modalities must be different")
|
93 |
+
# Default data paths
|
94 |
+
config.nnet_path = 'models/nnet_ema_114000.pth'
|
95 |
+
#config.autoencoder = {"pretrained_path": "assets/stable-diffusion/autoencoder_kl_ema.pth"}
|
96 |
+
|
97 |
+
return config
|
98 |
+
|
99 |
+
# Function to prepare image for inference
|
100 |
+
def prepare_images(images):
|
101 |
+
transforms = standard_transforms.Compose([
|
102 |
+
standard_transforms.ToTensor(),
|
103 |
+
standard_transforms.Normalize(mean=(0.5,), std=(0.5,))
|
104 |
+
])
|
105 |
+
img_tensors = []
|
106 |
+
for img in images:
|
107 |
+
img_tensors.append(transforms(img)) # Add batch dimension
|
108 |
+
return img_tensors
|
109 |
+
|
110 |
+
|
111 |
+
def run_inference(config, nnet, autoencoder, img_tensors):
|
112 |
+
set_seed(config.seed)
|
113 |
+
img_tensors = [tensor.to(config.device) for tensor in img_tensors]
|
114 |
+
# Create a context tensor for all modalities
|
115 |
+
img_contexts = torch.randn(config.num_modalities, 1, 2 * config.z_shape[0],
|
116 |
+
config.z_shape[1], config.z_shape[2], device=config.device)
|
117 |
+
with torch.no_grad():
|
118 |
+
# Encode the input images with autoencoder
|
119 |
+
z_conds = [autoencoder.encode_moments(tensor.unsqueeze(0)) for tensor in img_tensors]
|
120 |
+
# Create mapping of conditional modalities indices to the encoded inputs
|
121 |
+
cond_indices = [i for i, is_cond in enumerate(config.condition_modalities_mask) if is_cond]
|
122 |
+
# Check if we have the right number of inputs
|
123 |
+
if len(cond_indices) != len(z_conds):
|
124 |
+
raise ValueError(f"Number of conditioning modalities ({len(cond_indices)}) must match number of input images ({len(z_conds)})")
|
125 |
+
# Assign each encoded input to the corresponding modality
|
126 |
+
for i, z_cond in zip(cond_indices, z_conds):
|
127 |
+
img_contexts[i] = z_cond
|
128 |
+
# Sample values from the distribution (mean and variance)
|
129 |
+
z_imgs = torch.stack([autoencoder.sample(img_context) for img_context in img_contexts])
|
130 |
+
# Generate initial noise for the modalities being generated
|
131 |
+
_z_init = torch.randn(len(config.generate_modalities), 1, *z_imgs[0].shape[1:], device=config.device)
|
132 |
+
|
133 |
+
def combine_joint(z_list):
|
134 |
+
"""Combine individual modality tensors into a single concatenated tensor"""
|
135 |
+
return torch.concat([einops.rearrange(z_i, 'B C H W -> B (C H W)') for z_i in z_list], dim=-1)
|
136 |
+
|
137 |
+
def split_joint(x, z_imgs, config):
|
138 |
+
"""
|
139 |
+
Split the combined tensor back into individual modality tensors
|
140 |
+
and arrange them according to the full set of modalities
|
141 |
+
"""
|
142 |
+
C, H, W = config.z_shape
|
143 |
+
z_dim = C * H * W
|
144 |
+
z_generated = x.split([z_dim] * len(config.generate_modalities), dim=1)
|
145 |
+
z_generated = {modality: einops.rearrange(z_i, 'B (C H W) -> B C H W', C=C, H=H, W=W)
|
146 |
+
for z_i, modality in zip(z_generated, config.generate_modalities)}
|
147 |
+
z = []
|
148 |
+
for i, modality in enumerate(config.modalities):
|
149 |
+
if modality in config.generate_modalities: # Modalities that are being denoised
|
150 |
+
z.append(z_generated[modality])
|
151 |
+
elif modality in config.condition_modalities: # Modalities that are being conditioned on
|
152 |
+
z.append(z_imgs[i])
|
153 |
+
else: # Modalities that are ignored
|
154 |
+
z.append(torch.randn(x.shape[0], C, H, W, device=config.device))
|
155 |
+
|
156 |
+
return z
|
157 |
+
|
158 |
+
_x_init = combine_joint(_z_init) # Initial tensor for the modalities being generated
|
159 |
+
_betas = stable_diffusion_beta_schedule()
|
160 |
+
N = len(_betas)
|
161 |
+
|
162 |
+
def model_fn(x, t_continuous):
|
163 |
+
t = t_continuous * N
|
164 |
+
|
165 |
+
# Create timesteps for each modality based on the generate mask
|
166 |
+
timesteps = [t if mask else torch.zeros_like(t) for mask in config.generate_modalities_mask]
|
167 |
+
# Split the input into a list of tensors for all modalities
|
168 |
+
z = split_joint(x, z_imgs, config)
|
169 |
+
# Call the network with the right format
|
170 |
+
z_out = nnet(z, t_imgs=timesteps)
|
171 |
+
# Select only the generated modalities for the denoising process
|
172 |
+
z_out_generated = [z_out[i]
|
173 |
+
for i, modality in enumerate(config.modalities)
|
174 |
+
if modality in config.generate_modalities]
|
175 |
+
# Combine the outputs back into a single tensor
|
176 |
+
return combine_joint(z_out_generated)
|
177 |
+
|
178 |
+
# Sample using the DPM-Solver with exact parameters from sample_n_triffuser.py
|
179 |
+
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=torch.tensor(_betas, device=config.device).float())
|
180 |
+
dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True, thresholding=False)
|
181 |
+
|
182 |
+
# Generate samples
|
183 |
+
with torch.no_grad():
|
184 |
+
with torch.autocast(device_type=config.device):
|
185 |
+
x = dpm_solver.sample(_x_init, steps=config.sample.sample_steps, eps=1. / N, T=1.)
|
186 |
+
|
187 |
+
# Split the result back into individual modality tensors
|
188 |
+
_zs = split_joint(x, z_imgs, config)
|
189 |
+
|
190 |
+
# Replace conditional modalities with the original images
|
191 |
+
for i, mask in enumerate(config.condition_modalities_mask):
|
192 |
+
if mask:
|
193 |
+
_zs[i] = z_imgs[i]
|
194 |
+
|
195 |
+
# Decode and unprocess the generated samples
|
196 |
+
generated_samples = []
|
197 |
+
for i, modality in enumerate(config.modalities):
|
198 |
+
if modality in config.generate_modalities:
|
199 |
+
sample = autoencoder.decode(_zs[i]) # Decode the latent representation
|
200 |
+
sample = unpreprocess(sample) # Unpreprocess to [0, 1] range
|
201 |
+
generated_samples.append((modality, sample))
|
202 |
+
|
203 |
+
return generated_samples
|
204 |
+
|
205 |
+
def custom_inference(images, generate_modalities, condition_modalities, num_inference_steps, seed=None):
|
206 |
+
"""
|
207 |
+
Run custom inference with user-specified parameters
|
208 |
+
|
209 |
+
Args:
|
210 |
+
generate_modalities: List of modalities to generate
|
211 |
+
condition_modalities: List of modalities to condition on
|
212 |
+
image_paths: Path to conditioning image or list of paths (ordered to match condition_modalities)
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
Dict mapping modality names to generated tensors
|
216 |
+
"""
|
217 |
+
if seed is None:
|
218 |
+
seed = random.randint(0, int(1e8))
|
219 |
+
|
220 |
+
img_tensors = prepare_images(images)
|
221 |
+
|
222 |
+
config = get_config(generate_modalities, condition_modalities, seed=seed)
|
223 |
+
config.sample.sample_steps = num_inference_steps
|
224 |
+
generated_samples = run_inference(config, nnet, autoencoder, img_tensors)
|
225 |
+
results = {modality: tensor for modality, tensor in generated_samples}
|
226 |
+
|
227 |
+
return results
|
228 |
+
|
229 |
+
def generate_output(s2l1c_input, s2l1c_active, s2l2a_input, s2l2a_active, s1rtc_input, s1rtc_active, dem_input, dem_active,num_inference_steps_slider, seed_number, ignore_seed):
|
230 |
+
|
231 |
+
seed = seed_number if not ignore_seed else None
|
232 |
+
|
233 |
+
images=[]
|
234 |
+
condition_modalities=[]
|
235 |
+
if s2l2a_active:
|
236 |
+
images.append(s2l2a_input)
|
237 |
+
condition_modalities.append('s2_l2a')
|
238 |
+
if s2l1c_active:
|
239 |
+
images.append(s2l1c_input)
|
240 |
+
condition_modalities.append('s2_l1c')
|
241 |
+
if s1rtc_active:
|
242 |
+
images.append(s1rtc_input)
|
243 |
+
condition_modalities.append('s1_rtc')
|
244 |
+
if dem_active:
|
245 |
+
images.append(dem_input)
|
246 |
+
condition_modalities.append('dem')
|
247 |
+
|
248 |
+
imgs_out = custom_inference(
|
249 |
+
images=images,
|
250 |
+
generate_modalities=[el for el in ['s2_l2a', 's2_l1c', 's1_rtc', 'dem'] if el not in condition_modalities],
|
251 |
+
condition_modalities=condition_modalities,
|
252 |
+
num_inference_steps=num_inference_steps_slider,
|
253 |
+
seed=seed
|
254 |
+
)
|
255 |
+
|
256 |
+
output = []
|
257 |
+
|
258 |
+
# Collect outputs
|
259 |
+
if s2l1c_active:
|
260 |
+
output.append(s2l1c_input)
|
261 |
+
else:
|
262 |
+
output.append(to_PIL(imgs_out['s2_l1c'][0]))
|
263 |
+
if s2l2a_active:
|
264 |
+
output.append(s2l2a_input)
|
265 |
+
else:
|
266 |
+
output.append(to_PIL(imgs_out['s2_l2a'][0]))
|
267 |
+
if s1rtc_active:
|
268 |
+
output.append(s1rtc_input)
|
269 |
+
else:
|
270 |
+
output.append(to_PIL(imgs_out['s1_rtc'][0]))
|
271 |
+
if dem_active:
|
272 |
+
output.append(dem_input)
|
273 |
+
else:
|
274 |
+
output.append(to_PIL(imgs_out['dem'][0]))
|
275 |
+
|
276 |
+
return output
|
277 |
+
|
278 |
+
|
src/utils.py
CHANGED
@@ -100,8 +100,8 @@ def get_rows(grid_cell):
|
|
100 |
l2a_df, l1c_df, rtc_df, and dem_df. It assumes these DataFrames are defined in the scope.
|
101 |
Each element of the tuple is a Pandas Series representing a row.
|
102 |
"""
|
103 |
-
return
|
104 |
-
|
105 |
rtc_df[rtc_df.grid_cell == grid_cell].iloc[0], \
|
106 |
dem_df[dem_df.grid_cell == grid_cell].iloc[0]
|
107 |
|
|
|
100 |
l2a_df, l1c_df, rtc_df, and dem_df. It assumes these DataFrames are defined in the scope.
|
101 |
Each element of the tuple is a Pandas Series representing a row.
|
102 |
"""
|
103 |
+
return l1c_df[l1c_df.grid_cell == grid_cell].iloc[0], \
|
104 |
+
l2a_df[l2a_df.grid_cell == grid_cell].iloc[0], \
|
105 |
rtc_df[rtc_df.grid_cell == grid_cell].iloc[0], \
|
106 |
dem_df[dem_df.grid_cell == grid_cell].iloc[0]
|
107 |
|