ffreemt
with gr.Accordion('� Info', open=False):
095939c
import json
import mimetypes
import os
import re
import shutil
import threading
from typing import Optional
from loguru import logger
import gradio as gr
from dotenv import load_dotenv
# from huggingface_hub import login
from smolagents import (
CodeAgent,
# HfApiModel,
# LiteLLMModel,
OpenAIServerModel,
Tool,
# GoogleSearchTool,
DuckDuckGoSearchTool,
)
from smolagents.agent_types import (
AgentAudio,
AgentImage,
AgentText,
handle_agent_output_types,
)
from smolagents.gradio_ui import stream_to_gradio
from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
ArchiveSearchTool,
FinderTool,
FindNextTool,
PageDownTool,
PageUpTool,
SimpleTextBrowser,
VisitTool,
)
from scripts.visual_qa import visualizer
# web_search = GoogleSearchTool(provider="serper")
web_search = DuckDuckGoSearchTool()
# print(web_search(query="Donald Trump news"))
# TODO fix ValueError: {'message': 'Unauthorized.', 'statusCode': 403}
# quit()
AUTHORIZED_IMPORTS = [
"requests",
"zipfile",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"fractions",
"csv",
]
load_dotenv(override=True)
# login(os.getenv("HF_TOKEN")) # this is not necessary if env var HF_TOKEN is set
append_answer_lock = threading.Lock()
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
BROWSER_CONFIG = {
"viewport_size": 1024 * 5,
"downloads_folder": "downloads_folder",
"request_kwargs": {
"headers": {"User-Agent": user_agent},
"timeout": 300,
},
"serpapi_key": os.getenv("SERPAPI_API_KEY"),
}
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)
model_id = os.getenv("MODEL_ID", "deepseek-ai/DeepSeek-V3")
_ = "" if os.getenv("OPENAI_API_KEY") is None else os.getenv("OPENAI_API_KEY")[:8] + "..."
if os.getenv("MODEL_ID") and os.getenv("OPENAI_API_BASE"):
logger.debug(f"""using OpenAIServerModel: {model_id=}, {os.getenv("OPENAI_API_BASE")=}, os.getenv("OPENAI_API_BASE")={_}""")
# model = LiteLLMModel(
model = OpenAIServerModel(
# "gpt-4o",
# os.getenv("MODEL_ID", "gpt-4o-mini"),
model_id,
custom_role_conversions=custom_role_conversions,
api_base=os.getenv("OPENAI_API_BASE"),
api_key=os.getenv("OPENAI_API_KEY"),
)
else:
logger.debug(f"""using LiteLLMModel: HfApiModel default model_id=Qwen/Qwen2.5-Coder-32B-Instruct""")
model = HfApiModel(
custom_role_conversions=custom_role_conversions,
)
text_limit = 20000
ti_tool = TextInspectorTool(model, text_limit)
browser = SimpleTextBrowser(**BROWSER_CONFIG)
WEB_TOOLS = [
web_search, # duckduckgo
VisitTool(browser),
PageUpTool(browser),
PageDownTool(browser),
FinderTool(browser),
FindNextTool(browser),
ArchiveSearchTool(browser),
TextInspectorTool(model, text_limit),
]
# Agent creation in a factory function
def create_agent():
"""Creates a fresh agent instance for each session"""
return CodeAgent(
model=model,
tools=[visualizer] + WEB_TOOLS,
max_steps=10,
verbosity_level=1,
additional_authorized_imports=AUTHORIZED_IMPORTS,
planning_interval=4,
)
document_inspection_tool = TextInspectorTool(model, 20000)
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, file_upload_folder: str | None = None):
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(file_upload_folder):
os.mkdir(file_upload_folder)
def interact_with_agent(self, prompt, messages, session_state):
# Get or create session-specific agent
if "agent" not in session_state:
session_state["agent"] = create_agent()
# Adding monitoring
try:
# log the existence of agent memory
has_memory = hasattr(session_state["agent"], "memory")
print(f"Agent has memory: {has_memory}")
if has_memory:
print(f"Memory type: {type(session_state['agent'].memory)}")
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
for msg in stream_to_gradio(
session_state["agent"], task=prompt, reset_agent_memory=False
):
messages.append(msg)
yield messages
yield messages
except Exception as e:
print(f"Error in interaction: {str(e)}")
raise
def upload_file(
self,
file,
file_uploads_log,
allowed_file_types=[
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain",
],
):
"""
Handle file uploads, default allowed types are .pdf, .docx, and .txt
"""
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
try:
mime_type, _ = mimetypes.guess_type(file.name)
except Exception as e:
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
if mime_type not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
# Sanitize file name
original_name = os.path.basename(file.name)
sanitized_name = re.sub(
r"[^\w\-.]", "_", original_name
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
type_to_ext = {}
for ext, t in mimetypes.types_map.items():
if t not in type_to_ext:
type_to_ext[t] = ext
# Ensure the extension correlates to the mime type
sanitized_name = sanitized_name.split(".")[:-1]
sanitized_name.append("" + type_to_ext[mime_type])
sanitized_name = "".join(sanitized_name)
# Save the uploaded file to the specified folder
file_path = os.path.join(
self.file_upload_folder, os.path.basename(sanitized_name)
)
shutil.copy(file.name, file_path)
return gr.Textbox(
f"File uploaded: {file_path}", visible=True
), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
gr.Textbox(
value="",
interactive=False,
placeholder="Please wait while Steps are getting populated",
),
gr.Button(interactive=False),
)
def detect_device(self, request: gr.Request):
# Check whether the user device is a mobile or a computer
if not request:
return "Unknown device"
# Method 1: Check sec-ch-ua-mobile header
is_mobile_header = request.headers.get("sec-ch-ua-mobile")
if is_mobile_header:
return "Mobile" if "?1" in is_mobile_header else "Desktop"
# Method 2: Check user-agent string
user_agent = request.headers.get("user-agent", "").lower()
mobile_keywords = ["android", "iphone", "ipad", "mobile", "phone"]
if any(keyword in user_agent for keyword in mobile_keywords):
return "Mobile"
# Method 3: Check platform
platform = request.headers.get("sec-ch-ua-platform", "").lower()
if platform:
if platform in ['"android"', '"ios"']:
return "Mobile"
elif platform in ['"windows"', '"macos"', '"linux"']:
return "Desktop"
# Default case if no clear indicators
return "Desktop"
def launch(self, **kwargs):
with gr.Blocks(theme="ocean", fill_height=True) as demo:
# Different layouts for mobile and computer devices
@gr.render()
def layout(request: gr.Request):
device = self.detect_device(request)
print(f"device - {device}")
# Render layout with sidebar
if device == "Desktop":
with gr.Blocks(
fill_height=True,
):
file_uploads_log = gr.State([])
with gr.Sidebar():
with gr.Group():
gr.Markdown("**Your request**", container=True)
text_input = gr.Textbox(
lines=3,
label="Your request",
container=False,
placeholder="Enter your prompt here and press Shift+Enter or press the button",
)
launch_research_btn = gr.Button(
"Run", variant="primary"
)
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(
label="Upload Status",
interactive=False,
visible=False,
)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
# gr.HTML("<h4><center>Powered by huggingface/smolagents</center></h4>")
# gr.Markdown("Powered by [huggingface/smolagents](https://github.com/huggingface/smolagents)")
# _ = '''
with gr.Row():
gr.HTML("""<div style="display: flex; align-items: center; gap: 8px; font-family: system-ui, -apple-system, sans-serif;">Powered by
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png" style="width: 32px; height: 32px; object-fit: contain;" alt="logo">
<a target="_blank" href="https://github.com/huggingface/smolagents"><b>hf/smolagents</b></a>
</div>""")
# '''
# -----
with gr.Accordion("🎈 Info", open=False):
gr.Markdown("""### open Deep Research - free the AI agents!
OpenAI just (February 2, 2025) published [Deep Research](https://openai.com/index/introducing-deep-research/), an amazing assistant that can perform deep searches on the web to answer user questions.
However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our (Huggingface's) resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨
You can try a simplified version here that uses `Qwen-Coder-32B` (via smolagnet.HfApiModel) instead of `o1`. Modified: if you set MODEL_ID, OPENAI_API_BASE and OPENAI_API_KEY in the .env or env vars (in hf space these can be set in settings, .env will override env vars), the correspoding model will be used. N.B. if you see errors, it might be because whatever quota is exceeded, clone/duplicate this space and plug in your own resources and run your own deep-research.<br><br>""")
# Add session state to store session-specific data
session_state = gr.State(
{}
) # Initialize empty state for each session
stored_messages = gr.State([])
chatbot = gr.Chatbot(
label="open-Deep-Research",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=False,
scale=1,
elem_id="my-chatbot",
)
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, launch_research_btn],
).then(
self.interact_with_agent,
# Include session_state in function calls
[stored_messages, chatbot, session_state],
[chatbot],
).then(
lambda: (
gr.Textbox(
interactive=True,
placeholder="Enter your prompt here and press the button",
),
gr.Button(interactive=True),
),
None,
[text_input, launch_research_btn],
)
launch_research_btn.click(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, launch_research_btn],
).then(
self.interact_with_agent,
# Include session_state in function calls
[stored_messages, chatbot, session_state],
[chatbot],
).then(
lambda: (
gr.Textbox(
interactive=True,
placeholder="Enter your prompt here and press the button",
),
gr.Button(interactive=True),
),
None,
[text_input, launch_research_btn],
)
# Render simple layout
else:
with gr.Blocks(
fill_height=True,
):
gr.Markdown("""# open Deep Research - free the AI agents!
_Built with [smolagents](https://github.com/huggingface/smolagents)_
OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions.
However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨
You can try a simplified version below (uses `Qwen-Coder-32B` instead of `o1`, so much less powerful than the original open-Deep-Research)👇""")
# Add session state to store session-specific data
session_state = gr.State(
{}
) # Initialize empty state for each session
stored_messages = gr.State([])
file_uploads_log = gr.State([])
chatbot = gr.Chatbot(
label="open-Deep-Research",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
)
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(
label="Upload Status", interactive=False, visible=False
)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
text_input = gr.Textbox(
lines=1,
label="Your request",
placeholder="Enter your prompt here and press the button",
)
launch_research_btn = gr.Button(
"Run",
variant="primary",
)
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, launch_research_btn],
).then(
self.interact_with_agent,
# Include session_state in function calls
[stored_messages, chatbot, session_state],
[chatbot],
).then(
lambda: (
gr.Textbox(
interactive=True,
placeholder="Enter your prompt here and press the button",
),
gr.Button(interactive=True),
),
None,
[text_input, launch_research_btn],
)
launch_research_btn.click(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, launch_research_btn],
).then(
self.interact_with_agent,
# Include session_state in function calls
[stored_messages, chatbot, session_state],
[chatbot],
).then(
lambda: (
gr.Textbox(
interactive=True,
placeholder="Enter your prompt here and press the button",
),
gr.Button(interactive=True),
),
None,
[text_input, launch_research_btn],
)
demo.launch(debug=True, **kwargs)
# can this fix ctrl-c no response? no
try:
GradioUI().launch()
except KeyboardInterrupt:
...