import os from transformers import pipeline # Set custom cache directory to avoid permission issues os.environ["TRANSFORMERS_CACHE"] = "/app/cache" # Load the model with TensorFlow weights if PyTorch version is unavailable summarizer = pipeline("summarization", model="t5-base", from_tf=True) from flask import Flask, request, jsonify app = Flask(__name__) @app.route("/summarize", methods=["POST"]) def summarize(): data = request.json text = data.get("text", "") summary = summarizer(text, max_length=150, min_length=30, do_sample=False) return jsonify({"summary": summary[0]["summary_text"]}) if __name__ == "__main__": app.run(host="0.0.0.0", port=7860)