from transformers import pipeline summarizer = pipeline("summarization", model="t5-base") text = "This is a long text that needs summarization." # Dynamically adjust max_length based on input length input_length = len(text.split()) # Approximate token count max_length = min(50, int(input_length * 0.8)) # 80% of input length summary = summarizer(text, max_length=max_length, min_length=5, do_sample=False) print(summary[0]["summary_text"])