Spaces:
Sleeping
Sleeping
import torch | |
from transformers import pipeline | |
# Force the model to use CPU explicitly | |
device = torch.device("cpu") | |
summarizer = pipeline("summarization", model="t5-base", device=-1) # -1 ensures CPU usage | |
text = "This is a long text that needs summarization." | |
# Dynamically adjust max_length based on input length | |
input_length = len(text.split()) # Approximate token count | |
max_length = min(50, int(input_length * 0.8)) # 80% of input length | |
summary = summarizer(text, max_length=max_length, min_length=5, do_sample=False) | |
print(summary[0]["summary_text"]) | |