Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import base64
|
|
3 |
import torch
|
4 |
import os
|
5 |
from flask import Flask, request, jsonify
|
6 |
-
from diffusers import StableDiffusionPipeline
|
7 |
from PIL import Image
|
8 |
import logging
|
9 |
|
@@ -12,17 +12,13 @@ logger = logging.getLogger(__name__)
|
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
|
15 |
-
# Load the model once at startup (on CPU)
|
16 |
try:
|
17 |
-
logger.info("Loading
|
18 |
-
token = os.getenv("HF_TOKEN")
|
19 |
-
if not token:
|
20 |
-
raise ValueError("HF_TOKEN environment variable not set")
|
21 |
pipe = StableDiffusionPipeline.from_pretrained(
|
22 |
-
"
|
23 |
torch_dtype=torch.float32,
|
24 |
cache_dir="/tmp/hf_home",
|
25 |
-
token=token, # Reintroduce token authentication
|
26 |
)
|
27 |
pipe.to("cpu")
|
28 |
logger.info("=== Application Startup at CPU mode =====")
|
@@ -37,7 +33,7 @@ def pil_to_base64(image):
|
|
37 |
|
38 |
@app.route("/")
|
39 |
def home():
|
40 |
-
return "
|
41 |
|
42 |
@app.route("/generate", methods=["POST"])
|
43 |
def generate():
|
@@ -46,30 +42,20 @@ def generate():
|
|
46 |
|
47 |
try:
|
48 |
data = request.get_json()
|
49 |
-
|
50 |
|
51 |
-
if not
|
52 |
-
return jsonify({"error": "No
|
53 |
|
54 |
-
|
55 |
-
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
logger.info("Processing image with pipeline...")
|
60 |
-
result = pipe(image) # Adjust based on InstantMesh documentation
|
61 |
-
output_mesh = result.mesh # Hypothetical; check InstantMesh output format
|
62 |
-
|
63 |
-
output_path = "/tmp/output.glb"
|
64 |
-
output_mesh.save(output_path)
|
65 |
-
with open(output_path, "rb") as f:
|
66 |
-
mesh_data = base64.b64encode(f.read()).decode("utf-8")
|
67 |
-
|
68 |
-
logger.info("Mesh processed successfully")
|
69 |
-
return jsonify({"mesh": f"data:model/gltf-binary;base64,{mesh_data}"})
|
70 |
|
71 |
except Exception as e:
|
72 |
-
logger.error(f"Error generating
|
73 |
return jsonify({"error": str(e)}), 500
|
74 |
|
75 |
if __name__ == "__main__":
|
|
|
3 |
import torch
|
4 |
import os
|
5 |
from flask import Flask, request, jsonify
|
6 |
+
from diffusers import StableDiffusionPipeline
|
7 |
from PIL import Image
|
8 |
import logging
|
9 |
|
|
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
|
15 |
+
# Load the model once at startup (on CPU)
|
16 |
try:
|
17 |
+
logger.info("Loading runwayml/stable-diffusion-v1-5 pipeline...")
|
|
|
|
|
|
|
18 |
pipe = StableDiffusionPipeline.from_pretrained(
|
19 |
+
"runwayml/stable-diffusion-v1-5",
|
20 |
torch_dtype=torch.float32,
|
21 |
cache_dir="/tmp/hf_home",
|
|
|
22 |
)
|
23 |
pipe.to("cpu")
|
24 |
logger.info("=== Application Startup at CPU mode =====")
|
|
|
33 |
|
34 |
@app.route("/")
|
35 |
def home():
|
36 |
+
return "Stable Diffusion CPU API is running!"
|
37 |
|
38 |
@app.route("/generate", methods=["POST"])
|
39 |
def generate():
|
|
|
42 |
|
43 |
try:
|
44 |
data = request.get_json()
|
45 |
+
prompt = data.get("prompt") # Use text prompt instead of image
|
46 |
|
47 |
+
if not prompt:
|
48 |
+
return jsonify({"error": "No prompt provided"}), 400
|
49 |
|
50 |
+
logger.info("Generating image with pipeline...")
|
51 |
+
result = pipe(prompt) # Generate image from text
|
52 |
+
image = result.images[0] # Get the first generated image
|
53 |
|
54 |
+
logger.info("Image generated successfully")
|
55 |
+
return jsonify({"image": f"data:image/png;base64,{pil_to_base64(image)}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
except Exception as e:
|
58 |
+
logger.error(f"Error generating image: {e}", exc_info=True)
|
59 |
return jsonify({"error": str(e)}), 500
|
60 |
|
61 |
if __name__ == "__main__":
|