mike23415 commited on
Commit
aaa6458
·
verified ·
1 Parent(s): b83bede

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +115 -27
app.py CHANGED
@@ -1,36 +1,124 @@
1
- import io
2
- import base64
3
  import os
4
- from flask import Flask, request, jsonify
5
- import logging
 
 
 
 
 
6
 
7
- logging.basicConfig(level=logging.INFO)
8
- logger = logging.getLogger(__name__)
 
9
 
10
- app = Flask(__name__)
 
 
 
 
11
 
12
- # Serve precomputed .glb file
13
- @app.route("/")
14
- def home():
15
- return "Precomputed 3D Model API is running!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
- @app.route("/generate", methods=["POST"])
18
- def generate():
19
  try:
20
- # Path to precomputed .glb file in your Space
21
- glb_path = os.path.join("/app", "data", "sample_model.glb")
22
- if not os.path.exists(glb_path):
23
- return jsonify({"error": "Precomputed model not found"}), 404
24
-
25
- logger.info("Serving precomputed .glb file...")
26
- with open(glb_path, "rb") as f:
27
- mesh_data = base64.b64encode(f.read()).decode("utf-8")
28
-
29
- logger.info("Mesh served successfully")
30
- return jsonify({"mesh": f"data:model/gltf-binary;base64,{mesh_data}"})
31
  except Exception as e:
32
- logger.error(f"Error serving mesh: {e}", exc_info=True)
33
- return jsonify({"error": str(e)}), 500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
 
35
  if __name__ == "__main__":
36
- app.run(host="0.0.0.0", port=7860)
 
 
 
1
  import os
2
+ import gradio as gr
3
+ import torch
4
+ import numpy as np
5
+ from PIL import Image
6
+ import trimesh
7
+ from diffusers import Zero123Pipeline
8
+ import tempfile
9
 
10
+ # Check if CUDA is available, otherwise use CPU
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ print(f"Using device: {device}")
13
 
14
+ # Initialize the pipeline
15
+ pipe = Zero123Pipeline.from_pretrained(
16
+ "bennyguo/zero123-xl-diffusers",
17
+ torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
18
+ ).to(device)
19
 
20
+ def image_to_3d(input_image, num_inference_steps=75, guidance_scale=3.0):
21
+ """
22
+ Convert a single image to a 3D model
23
+ """
24
+ # Preprocess image
25
+ if input_image is None:
26
+ return None
27
+
28
+ input_image = input_image.convert("RGB").resize((256, 256))
29
+
30
+ # Generate multiple views using Zero123
31
+ images = []
32
+
33
+ # Generate views from different angles
34
+ for elevation in [0, 30]:
35
+ for azimuth in [0, 90, 180, 270]:
36
+ print(f"Generating view: elevation={elevation}, azimuth={azimuth}")
37
+ with torch.no_grad():
38
+ image = pipe(
39
+ image=input_image,
40
+ elevation=elevation,
41
+ azimuth=azimuth,
42
+ num_inference_steps=num_inference_steps,
43
+ guidance_scale=guidance_scale,
44
+ ).images[0]
45
+ images.append(np.array(image))
46
+
47
+ # Create point cloud from multiple views
48
+ # This is a simplified approach - in production you might want to use a more sophisticated method
49
+ points = []
50
+ for i, img in enumerate(images):
51
+ # Extract depth information (simplified approach)
52
+ gray = np.mean(img, axis=2)
53
+ # Sample points from the image
54
+ h, w = gray.shape
55
+ for y in range(0, h, 4):
56
+ for x in range(0, w, 4):
57
+ depth = gray[y, x] / 255.0 # Normalize depth
58
+
59
+ # Convert to 3D point based on view angle
60
+ angle_idx = i % 4
61
+ elevation = 0 if i < 4 else 30
62
+ azimuth = angle_idx * 90
63
+
64
+ # Convert to radians
65
+ elevation_rad = elevation * np.pi / 180
66
+ azimuth_rad = azimuth * np.pi / 180
67
+
68
+ # Calculate 3D position based on spherical coordinates
69
+ z = depth * np.cos(elevation_rad) * np.cos(azimuth_rad)
70
+ x = depth * np.cos(elevation_rad) * np.sin(azimuth_rad)
71
+ y = depth * np.sin(elevation_rad)
72
+
73
+ points.append([x, y, z])
74
+
75
+ # Create a point cloud
76
+ point_cloud = np.array(points)
77
+
78
+ # Save point cloud to OBJ file
79
+ with tempfile.NamedTemporaryFile(suffix='.obj', delete=False) as tmp_file:
80
+ mesh = trimesh.points.PointCloud(point_cloud)
81
+ mesh.export(tmp_file.name)
82
+
83
+ # Also export as PLY for better compatibility
84
+ ply_path = tmp_file.name.replace('.obj', '.ply')
85
+ mesh.export(ply_path)
86
+
87
+ return [tmp_file.name, ply_path]
88
 
89
+ def process_image(image, num_steps, guidance):
 
90
  try:
91
+ model_paths = image_to_3d(image, num_inference_steps=num_steps, guidance_scale=guidance)
92
+ if model_paths:
93
+ return model_paths[0], model_paths[1], "3D model generated successfully!"
94
+ else:
95
+ return None, None, "Failed to process the image."
 
 
 
 
 
 
96
  except Exception as e:
97
+ return None, None, f"Error: {str(e)}"
98
+
99
+ # Create Gradio interface
100
+ with gr.Blocks(title="Image to 3D Model Converter") as demo:
101
+ gr.Markdown("# Image to 3D Model Converter")
102
+ gr.Markdown("Upload an image to convert it to a 3D model that you can use in Unity or other engines.")
103
+
104
+ with gr.Row():
105
+ with gr.Column(scale=1):
106
+ input_image = gr.Image(type="pil", label="Input Image")
107
+ num_steps = gr.Slider(minimum=20, maximum=100, value=75, step=5, label="Number of Inference Steps")
108
+ guidance = gr.Slider(minimum=1.0, maximum=7.0, value=3.0, step=0.5, label="Guidance Scale")
109
+ submit_btn = gr.Button("Convert to 3D")
110
+
111
+ with gr.Column(scale=1):
112
+ obj_file = gr.File(label="OBJ File")
113
+ ply_file = gr.File(label="PLY File")
114
+ output_message = gr.Textbox(label="Output Message")
115
+
116
+ submit_btn.click(
117
+ fn=process_image,
118
+ inputs=[input_image, num_steps, guidance],
119
+ outputs=[obj_file, ply_file, output_message]
120
+ )
121
 
122
+ # Launch the app
123
  if __name__ == "__main__":
124
+ demo.launch(server_name="0.0.0.0", server_port=7860)