Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,136 +1,56 @@
|
|
1 |
import os
|
2 |
-
import logging
|
3 |
-
import pip
|
4 |
-
from flask import Flask, request, jsonify, send_file
|
5 |
import torch
|
|
|
|
|
6 |
from PIL import Image
|
7 |
-
import
|
8 |
-
|
9 |
-
# Configure logging to stdout instead of files
|
10 |
-
logging.basicConfig(
|
11 |
-
level=logging.INFO,
|
12 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
13 |
-
handlers=[logging.StreamHandler()]
|
14 |
-
)
|
15 |
-
logger = logging.getLogger(__name__)
|
16 |
-
|
17 |
-
# Try to update the required packages
|
18 |
-
try:
|
19 |
-
logger.info("Updating huggingface_hub and diffusers...")
|
20 |
-
pip.main(['install', '--upgrade', 'huggingface_hub', '--quiet'])
|
21 |
-
pip.main(['install', '--upgrade', 'diffusers', '--quiet'])
|
22 |
-
except Exception as e:
|
23 |
-
logger.warning(f"Failed to update libraries: {str(e)}")
|
24 |
-
|
25 |
-
# Set Hugging Face cache directory to a writable path
|
26 |
-
os.environ['HF_HOME'] = '/tmp/hf_home'
|
27 |
-
os.environ['XDG_CACHE_HOME'] = '/tmp/cache'
|
28 |
-
|
29 |
-
# Create cache directories if they don't exist
|
30 |
-
os.makedirs('/tmp/hf_home', exist_ok=True)
|
31 |
-
os.makedirs('/tmp/cache', exist_ok=True)
|
32 |
-
os.makedirs('/tmp/diffusers_cache', exist_ok=True)
|
33 |
-
|
34 |
-
# Global variable for the model
|
35 |
-
pipe = None
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
try:
|
41 |
-
logger.info("Loading Zero123Plus model...")
|
42 |
-
# Import here to ensure the environment variables are set before import
|
43 |
-
from diffusers import AutoPipelineForImage2Image
|
44 |
-
from huggingface_hub import snapshot_download
|
45 |
-
|
46 |
-
try:
|
47 |
-
# First try to download the model files
|
48 |
-
model_path = snapshot_download(
|
49 |
-
"sudo-ai/zero123plus-v1.2",
|
50 |
-
cache_dir="/tmp/diffusers_cache",
|
51 |
-
local_files_only=False
|
52 |
-
)
|
53 |
-
|
54 |
-
# Then load from local path
|
55 |
-
pipe = AutoPipelineForImage2Image.from_pretrained(
|
56 |
-
model_path,
|
57 |
-
torch_dtype=torch.float32,
|
58 |
-
safety_checker=None,
|
59 |
-
low_cpu_mem_usage=True
|
60 |
-
)
|
61 |
-
except Exception as download_error:
|
62 |
-
logger.warning(f"Failed to download using snapshot_download: {str(download_error)}")
|
63 |
-
|
64 |
-
# Fallback to direct loading with local_files_only=False
|
65 |
-
pipe = AutoPipelineForImage2Image.from_pretrained(
|
66 |
-
"sudo-ai/zero123plus-v1.2",
|
67 |
-
torch_dtype=torch.float32,
|
68 |
-
cache_dir="/tmp/diffusers_cache",
|
69 |
-
safety_checker=None,
|
70 |
-
low_cpu_mem_usage=True,
|
71 |
-
local_files_only=False
|
72 |
-
)
|
73 |
-
|
74 |
-
pipe.to("cpu")
|
75 |
-
logger.info("Model loaded successfully")
|
76 |
-
return True
|
77 |
-
except Exception as e:
|
78 |
-
logger.error(f"Error loading model: {str(e)}")
|
79 |
-
return False
|
80 |
|
81 |
-
#
|
82 |
app = Flask(__name__)
|
83 |
|
84 |
-
# Load
|
85 |
-
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
@app.route("/generate", methods=["POST"])
|
95 |
-
def
|
96 |
-
|
97 |
-
|
98 |
-
# Check if model is loaded
|
99 |
-
if pipe is None:
|
100 |
-
success = load_model()
|
101 |
-
if not success:
|
102 |
-
return jsonify({"error": "Failed to initialize model"}), 500
|
103 |
-
|
104 |
-
if 'image' not in request.files:
|
105 |
-
logger.warning("No image uploaded")
|
106 |
-
return jsonify({"error": "No image uploaded"}), 400
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
logger.info(f"Starting image generation with {num_steps} steps")
|
116 |
-
# Generate new views
|
117 |
-
result = pipe(
|
118 |
-
image=input_image,
|
119 |
-
num_inference_steps=num_steps
|
120 |
-
)
|
121 |
-
|
122 |
output_image = result.images[0]
|
123 |
-
logger.info(f"Generated image of size {output_image.size}")
|
124 |
|
125 |
-
#
|
126 |
-
img_io =
|
127 |
output_image.save(img_io, 'PNG')
|
128 |
img_io.seek(0)
|
129 |
-
|
130 |
return send_file(img_io, mimetype='image/png')
|
131 |
-
|
132 |
except Exception as e:
|
133 |
-
|
134 |
return jsonify({"error": str(e)}), 500
|
135 |
|
136 |
if __name__ == "__main__":
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from flask import Flask, request, jsonify, send_file
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
from PIL import Image
|
6 |
+
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Optional: logs
|
9 |
+
import logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Flask app setup
|
13 |
app = Flask(__name__)
|
14 |
|
15 |
+
# Load model once at startup
|
16 |
+
logging.info("Loading Zero123Plus pipeline...")
|
17 |
|
18 |
+
MODEL_ID = "sudo-ai/zero123plus-v1.2" # Or your preferred model
|
19 |
+
try:
|
20 |
+
pipe = DiffusionPipeline.from_pretrained(
|
21 |
+
MODEL_ID,
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
variant="fp16"
|
24 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
+
except Exception as e:
|
26 |
+
logging.error(f"Error loading model: {e}")
|
27 |
+
pipe = None
|
28 |
+
|
29 |
+
@app.route("/")
|
30 |
+
def health_check():
|
31 |
+
return jsonify({"status": "Zero123 API is running!"})
|
32 |
|
33 |
@app.route("/generate", methods=["POST"])
|
34 |
+
def generate_image():
|
35 |
+
if pipe is None:
|
36 |
+
return jsonify({"error": "Model not loaded properly"}), 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
data = request.files.get("image")
|
39 |
+
if not data:
|
40 |
+
return jsonify({"error": "No image provided"}), 400
|
41 |
|
42 |
+
try:
|
43 |
+
input_image = Image.open(data).convert("RGB")
|
44 |
+
result = pipe(image=input_image, num_inference_steps=30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
output_image = result.images[0]
|
|
|
46 |
|
47 |
+
# Return as image file
|
48 |
+
img_io = BytesIO()
|
49 |
output_image.save(img_io, 'PNG')
|
50 |
img_io.seek(0)
|
|
|
51 |
return send_file(img_io, mimetype='image/png')
|
|
|
52 |
except Exception as e:
|
53 |
+
logging.error(f"Generation error: {e}")
|
54 |
return jsonify({"error": str(e)}), 500
|
55 |
|
56 |
if __name__ == "__main__":
|