Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import tempfile
|
|
4 |
import jinja2
|
5 |
import pdfkit
|
6 |
import torch
|
|
|
7 |
from threading import Thread
|
8 |
from flask import Flask, request, send_file, jsonify
|
9 |
from flask_cors import CORS
|
@@ -13,7 +14,13 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
13 |
os.environ['HF_HOME'] = '/app/.cache'
|
14 |
os.environ['XDG_CACHE_HOME'] = '/app/.cache'
|
15 |
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
17 |
app = Flask(__name__)
|
18 |
CORS(app)
|
19 |
|
@@ -22,11 +29,20 @@ model_loaded = False
|
|
22 |
load_error = None
|
23 |
generator = None
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
def load_model():
|
26 |
global model_loaded, load_error, generator
|
27 |
try:
|
|
|
|
|
28 |
# Detect device and dtype automatically
|
29 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
|
30 |
|
31 |
model = AutoModelForCausalLM.from_pretrained(
|
32 |
"gpt2-medium",
|
@@ -47,17 +63,15 @@ def load_model():
|
|
47 |
)
|
48 |
|
49 |
model_loaded = True
|
50 |
-
|
51 |
|
52 |
except Exception as e:
|
53 |
load_error = str(e)
|
54 |
-
|
55 |
|
56 |
# Start model loading in background thread
|
57 |
Thread(target=load_model).start()
|
58 |
|
59 |
-
|
60 |
-
|
61 |
# --------------------------------------------------
|
62 |
# IEEE Format Template
|
63 |
# --------------------------------------------------
|
@@ -102,14 +116,12 @@ IEEE_TEMPLATE = """
|
|
102 |
{{ abstract }}
|
103 |
<div class="keywords">Keywords— {{ keywords }}</div>
|
104 |
</div>
|
105 |
-
|
106 |
<div class="two-column">
|
107 |
{% for section in sections %}
|
108 |
<h2>{{ section.title }}</h2>
|
109 |
{{ section.content }}
|
110 |
{% endfor %}
|
111 |
</div>
|
112 |
-
|
113 |
<div class="references">
|
114 |
<h2>References</h2>
|
115 |
{% for ref in references %}
|
@@ -125,42 +137,58 @@ IEEE_TEMPLATE = """
|
|
125 |
# --------------------------------------------------
|
126 |
@app.route('/health', methods=['GET'])
|
127 |
def health_check():
|
|
|
|
|
128 |
if load_error:
|
|
|
129 |
return jsonify({
|
130 |
"status": "error",
|
131 |
"message": f"Model failed to load: {load_error}"
|
132 |
}), 500
|
133 |
|
|
|
|
|
|
|
|
|
134 |
return jsonify({
|
135 |
"status": "ready" if model_loaded else "loading",
|
136 |
"model_loaded": model_loaded,
|
137 |
-
"device":
|
138 |
-
}),
|
139 |
|
140 |
@app.route('/generate', methods=['POST'])
|
141 |
def generate_pdf():
|
142 |
# Check model status
|
143 |
if not model_loaded:
|
|
|
144 |
return jsonify({
|
145 |
"error": "Model not loaded yet",
|
146 |
"status": "loading"
|
147 |
}), 503
|
148 |
|
149 |
try:
|
|
|
|
|
150 |
# Validate input
|
151 |
data = request.json
|
152 |
if not data:
|
|
|
153 |
return jsonify({"error": "No data provided"}), 400
|
154 |
|
155 |
required = ['title', 'authors', 'content']
|
156 |
if missing := [field for field in required if field not in data]:
|
|
|
157 |
return jsonify({
|
158 |
"error": f"Missing fields: {', '.join(missing)}"
|
159 |
}), 400
|
160 |
|
161 |
-
|
|
|
|
|
|
|
162 |
formatted = format_content(data['content'])
|
163 |
|
|
|
164 |
# Generate HTML
|
165 |
html = jinja2.Template(IEEE_TEMPLATE).render(
|
166 |
title=data['title'],
|
@@ -183,33 +211,178 @@ def generate_pdf():
|
|
183 |
}
|
184 |
|
185 |
# Create temporary PDF
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
|
|
|
|
|
|
|
|
190 |
except Exception as e:
|
|
|
191 |
return jsonify({"error": str(e)}), 500
|
|
|
192 |
finally:
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
196 |
|
197 |
# --------------------------------------------------
|
198 |
# Content Formatting
|
199 |
# --------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
def format_content(content):
|
|
|
201 |
try:
|
202 |
-
|
203 |
-
|
|
|
|
|
204 |
prompt,
|
205 |
-
max_new_tokens=
|
206 |
-
temperature=0.
|
207 |
do_sample=True,
|
208 |
-
truncation=True
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
except Exception as e:
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
if __name__ == '__main__':
|
215 |
app.run(host='0.0.0.0', port=5000)
|
|
|
4 |
import jinja2
|
5 |
import pdfkit
|
6 |
import torch
|
7 |
+
import logging
|
8 |
from threading import Thread
|
9 |
from flask import Flask, request, send_file, jsonify
|
10 |
from flask_cors import CORS
|
|
|
14 |
os.environ['HF_HOME'] = '/app/.cache'
|
15 |
os.environ['XDG_CACHE_HOME'] = '/app/.cache'
|
16 |
|
17 |
+
# Configure logging
|
18 |
+
logging.basicConfig(
|
19 |
+
level=logging.INFO,
|
20 |
+
format='%(asctime)s [%(levelname)s] %(message)s'
|
21 |
+
)
|
22 |
|
23 |
+
# Initialize Flask app
|
24 |
app = Flask(__name__)
|
25 |
CORS(app)
|
26 |
|
|
|
29 |
load_error = None
|
30 |
generator = None
|
31 |
|
32 |
+
# Configure wkhtmltopdf
|
33 |
+
# Use xvfb-run for headless PDF generation
|
34 |
+
WKHTMLTOPDF_CMD = 'xvfb-run -a wkhtmltopdf'
|
35 |
+
pdf_config = pdfkit.configuration(wkhtmltopdf=WKHTMLTOPDF_CMD)
|
36 |
+
|
37 |
def load_model():
|
38 |
global model_loaded, load_error, generator
|
39 |
try:
|
40 |
+
app.logger.info("Starting model loading process")
|
41 |
+
|
42 |
# Detect device and dtype automatically
|
43 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
44 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
45 |
+
app.logger.info(f"Device set to use {device}")
|
46 |
|
47 |
model = AutoModelForCausalLM.from_pretrained(
|
48 |
"gpt2-medium",
|
|
|
63 |
)
|
64 |
|
65 |
model_loaded = True
|
66 |
+
app.logger.info(f"Model loaded successfully on {model.device}")
|
67 |
|
68 |
except Exception as e:
|
69 |
load_error = str(e)
|
70 |
+
app.logger.error(f"Model loading failed: {load_error}", exc_info=True)
|
71 |
|
72 |
# Start model loading in background thread
|
73 |
Thread(target=load_model).start()
|
74 |
|
|
|
|
|
75 |
# --------------------------------------------------
|
76 |
# IEEE Format Template
|
77 |
# --------------------------------------------------
|
|
|
116 |
{{ abstract }}
|
117 |
<div class="keywords">Keywords— {{ keywords }}</div>
|
118 |
</div>
|
|
|
119 |
<div class="two-column">
|
120 |
{% for section in sections %}
|
121 |
<h2>{{ section.title }}</h2>
|
122 |
{{ section.content }}
|
123 |
{% endfor %}
|
124 |
</div>
|
|
|
125 |
<div class="references">
|
126 |
<h2>References</h2>
|
127 |
{% for ref in references %}
|
|
|
137 |
# --------------------------------------------------
|
138 |
@app.route('/health', methods=['GET'])
|
139 |
def health_check():
|
140 |
+
app.logger.info("Health check requested")
|
141 |
+
|
142 |
if load_error:
|
143 |
+
app.logger.error(f"Health check failed: {load_error}")
|
144 |
return jsonify({
|
145 |
"status": "error",
|
146 |
"message": f"Model failed to load: {load_error}"
|
147 |
}), 500
|
148 |
|
149 |
+
status_code = 200 if model_loaded else 503
|
150 |
+
device_info = "cuda" if torch.cuda.is_available() else "cpu"
|
151 |
+
|
152 |
+
app.logger.info(f"Health check returning status: {'ready' if model_loaded else 'loading'}, device: {device_info}")
|
153 |
return jsonify({
|
154 |
"status": "ready" if model_loaded else "loading",
|
155 |
"model_loaded": model_loaded,
|
156 |
+
"device": device_info
|
157 |
+
}), status_code
|
158 |
|
159 |
@app.route('/generate', methods=['POST'])
|
160 |
def generate_pdf():
|
161 |
# Check model status
|
162 |
if not model_loaded:
|
163 |
+
app.logger.error("PDF generation requested but model not loaded")
|
164 |
return jsonify({
|
165 |
"error": "Model not loaded yet",
|
166 |
"status": "loading"
|
167 |
}), 503
|
168 |
|
169 |
try:
|
170 |
+
app.logger.info("Processing PDF generation request")
|
171 |
+
|
172 |
# Validate input
|
173 |
data = request.json
|
174 |
if not data:
|
175 |
+
app.logger.error("No data provided in request")
|
176 |
return jsonify({"error": "No data provided"}), 400
|
177 |
|
178 |
required = ['title', 'authors', 'content']
|
179 |
if missing := [field for field in required if field not in data]:
|
180 |
+
app.logger.error(f"Missing required fields: {missing}")
|
181 |
return jsonify({
|
182 |
"error": f"Missing fields: {', '.join(missing)}"
|
183 |
}), 400
|
184 |
|
185 |
+
app.logger.info(f"Received request with title: {data['title']}")
|
186 |
+
|
187 |
+
# Format content with model
|
188 |
+
app.logger.info("Formatting content using the model")
|
189 |
formatted = format_content(data['content'])
|
190 |
|
191 |
+
app.logger.info("Creating HTML from template")
|
192 |
# Generate HTML
|
193 |
html = jinja2.Template(IEEE_TEMPLATE).render(
|
194 |
title=data['title'],
|
|
|
211 |
}
|
212 |
|
213 |
# Create temporary PDF
|
214 |
+
app.logger.info("Generating PDF file")
|
215 |
+
pdf_path = None
|
216 |
+
|
217 |
+
try:
|
218 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as f:
|
219 |
+
pdf_path = f.name
|
220 |
+
|
221 |
+
# Generate PDF using wkhtmltopdf with xvfb
|
222 |
+
pdfkit.from_string(html, pdf_path, options=options, configuration=pdf_config)
|
223 |
+
|
224 |
+
app.logger.info(f"PDF generated successfully at {pdf_path}")
|
225 |
+
return send_file(pdf_path, mimetype='application/pdf', as_attachment=True,
|
226 |
+
download_name=f"{data['title'].replace(' ', '_')}.pdf")
|
227 |
|
228 |
+
except Exception as e:
|
229 |
+
app.logger.error(f"PDF generation failed: {str(e)}", exc_info=True)
|
230 |
+
raise
|
231 |
+
|
232 |
except Exception as e:
|
233 |
+
app.logger.error(f"Request processing failed: {str(e)}", exc_info=True)
|
234 |
return jsonify({"error": str(e)}), 500
|
235 |
+
|
236 |
finally:
|
237 |
+
# Clean up temporary file
|
238 |
+
if 'pdf_path' in locals() and pdf_path:
|
239 |
+
try:
|
240 |
+
app.logger.info(f"Cleaning up temporary file {pdf_path}")
|
241 |
+
os.remove(pdf_path)
|
242 |
+
except Exception as e:
|
243 |
+
app.logger.warning(f"Failed to remove temporary file: {str(e)}")
|
244 |
|
245 |
# --------------------------------------------------
|
246 |
# Content Formatting
|
247 |
# --------------------------------------------------
|
248 |
+
def parse_formatted_content(text):
|
249 |
+
"""Parse the generated text into structured sections"""
|
250 |
+
app.logger.info("Parsing formatted content")
|
251 |
+
|
252 |
+
try:
|
253 |
+
lines = text.split('\n')
|
254 |
+
|
255 |
+
# Default structure
|
256 |
+
result = {
|
257 |
+
'abstract': '',
|
258 |
+
'keywords': ['IEEE', 'format', 'research', 'paper'],
|
259 |
+
'sections': [],
|
260 |
+
'references': []
|
261 |
+
}
|
262 |
+
|
263 |
+
# Extract abstract (simple approach - first paragraph after "Abstract")
|
264 |
+
abstract_start = None
|
265 |
+
for i, line in enumerate(lines):
|
266 |
+
if line.strip().lower() == 'abstract':
|
267 |
+
abstract_start = i + 1
|
268 |
+
break
|
269 |
+
|
270 |
+
if abstract_start:
|
271 |
+
abstract_text = []
|
272 |
+
i = abstract_start
|
273 |
+
while i < len(lines) and not lines[i].strip().lower().startswith('keyword'):
|
274 |
+
if lines[i].strip():
|
275 |
+
abstract_text.append(lines[i].strip())
|
276 |
+
i += 1
|
277 |
+
result['abstract'] = ' '.join(abstract_text)
|
278 |
+
|
279 |
+
# Extract keywords
|
280 |
+
for line in lines:
|
281 |
+
if line.strip().lower().startswith('keyword'):
|
282 |
+
# Extract keywords from the line
|
283 |
+
keyword_parts = line.split('—')
|
284 |
+
if len(keyword_parts) > 1:
|
285 |
+
keywords = keyword_parts[1].strip().split(',')
|
286 |
+
result['keywords'] = [k.strip() for k in keywords if k.strip()]
|
287 |
+
break
|
288 |
+
|
289 |
+
# Extract sections
|
290 |
+
current_section = None
|
291 |
+
section_content = []
|
292 |
+
|
293 |
+
# Skip lines until we find a section heading
|
294 |
+
started = False
|
295 |
+
for line in lines:
|
296 |
+
# Very basic heuristic for Roman numerals section headings
|
297 |
+
if line.strip() and (line.strip()[0].isupper() or line.strip()[0].isdigit()):
|
298 |
+
started = True
|
299 |
+
if not started:
|
300 |
+
continue
|
301 |
+
|
302 |
+
if line.strip() and (line.strip()[0].isupper() or line.strip()[0].isdigit()) and len(line.strip().split()) <= 6:
|
303 |
+
# This is likely a section heading
|
304 |
+
if current_section:
|
305 |
+
# Save the previous section
|
306 |
+
result['sections'].append({
|
307 |
+
'title': current_section,
|
308 |
+
'content': '\n'.join(section_content)
|
309 |
+
})
|
310 |
+
section_content = []
|
311 |
+
|
312 |
+
current_section = line.strip()
|
313 |
+
elif current_section and line.strip().lower() == 'references':
|
314 |
+
# We've reached the references section
|
315 |
+
if current_section:
|
316 |
+
# Save the last section
|
317 |
+
result['sections'].append({
|
318 |
+
'title': current_section,
|
319 |
+
'content': '\n'.join(section_content)
|
320 |
+
})
|
321 |
+
break
|
322 |
+
elif current_section:
|
323 |
+
# Add to current section content
|
324 |
+
section_content.append(line)
|
325 |
+
|
326 |
+
# Extract references
|
327 |
+
in_references = False
|
328 |
+
for line in lines:
|
329 |
+
if line.strip().lower() == 'references':
|
330 |
+
in_references = True
|
331 |
+
continue
|
332 |
+
|
333 |
+
if in_references and line.strip():
|
334 |
+
result['references'].append(line.strip())
|
335 |
+
|
336 |
+
app.logger.info(f"Content parsed into {len(result['sections'])} sections and {len(result['references'])} references")
|
337 |
+
return result
|
338 |
+
|
339 |
+
except Exception as e:
|
340 |
+
app.logger.error(f"Error parsing formatted content: {str(e)}", exc_info=True)
|
341 |
+
# Return a basic structure if parsing fails
|
342 |
+
return {
|
343 |
+
'abstract': 'Error parsing content.',
|
344 |
+
'keywords': ['IEEE', 'format'],
|
345 |
+
'sections': [{'title': 'Content', 'content': text}],
|
346 |
+
'references': []
|
347 |
+
}
|
348 |
+
|
349 |
def format_content(content):
|
350 |
+
"""Format the content using the ML model"""
|
351 |
try:
|
352 |
+
app.logger.info("Formatting content with ML model")
|
353 |
+
prompt = f"Format this research content to IEEE standards with sections, abstract, and references:\n\n{str(content)}"
|
354 |
+
|
355 |
+
response = generator(
|
356 |
prompt,
|
357 |
+
max_new_tokens=1024, # Increased for more complete generation
|
358 |
+
temperature=0.5, # More deterministic output
|
359 |
do_sample=True,
|
360 |
+
truncation=True,
|
361 |
+
num_return_sequences=1
|
362 |
+
)
|
363 |
+
|
364 |
+
generated_text = response[0]['generated_text']
|
365 |
+
|
366 |
+
# Remove the prompt from the generated text
|
367 |
+
if prompt in generated_text:
|
368 |
+
formatted_text = generated_text[len(prompt):].strip()
|
369 |
+
else:
|
370 |
+
formatted_text = generated_text
|
371 |
+
|
372 |
+
app.logger.info("Content formatted successfully")
|
373 |
+
|
374 |
+
# Parse the formatted text into structured sections
|
375 |
+
return parse_formatted_content(formatted_text)
|
376 |
+
|
377 |
except Exception as e:
|
378 |
+
app.logger.error(f"Error formatting content: {str(e)}", exc_info=True)
|
379 |
+
# Return the original content if formatting fails
|
380 |
+
return {
|
381 |
+
'abstract': 'Content processing error.',
|
382 |
+
'keywords': ['IEEE', 'format'],
|
383 |
+
'sections': [{'title': 'Content', 'content': str(content)}],
|
384 |
+
'references': []
|
385 |
+
}
|
386 |
|
387 |
if __name__ == '__main__':
|
388 |
app.run(host='0.0.0.0', port=5000)
|