lbiester commited on
Commit
431efbb
·
verified ·
1 Parent(s): 2382365

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -1
app.py CHANGED
@@ -2,12 +2,16 @@ import gradio as gr
2
  import nltk
3
  from nltk.sentiment.vader import SentimentIntensityAnalyzer
4
  from transformers import pipeline
 
 
 
5
 
6
  # global variables to load models
7
  lr_model = load("lr_model.joblib")
8
  lr_vectorizer = load("vectorizer.joblib")
9
  sentiment_pipe = pipeline("text-classification", model="finiteautomata/bertweet-base-sentiment-analysis")
10
-
 
11
 
12
 
13
  def greet(name):
@@ -28,6 +32,9 @@ def predict_sentiment(text, model):
28
  x = lr_vectorizer.transform([text])
29
  pred = lr_model.predict_proba(x)[0]
30
  return {"neg": pred[0], "pos": pred[1]}
 
 
 
31
 
32
 
33
  demo = gr.Blocks()
 
2
  import nltk
3
  from nltk.sentiment.vader import SentimentIntensityAnalyzer
4
  from transformers import pipeline
5
+ from joblib import load
6
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
7
+ import torch.nn.functional as F
8
 
9
  # global variables to load models
10
  lr_model = load("lr_model.joblib")
11
  lr_vectorizer = load("vectorizer.joblib")
12
  sentiment_pipe = pipeline("text-classification", model="finiteautomata/bertweet-base-sentiment-analysis")
13
+ bert_model = AutoModelForSequenceClassification.from_pretrained("./imdb-bert")
14
+ bert_tokenizer = AutoTokenizer.from_pretrained("./imdb-bert")
15
 
16
 
17
  def greet(name):
 
32
  x = lr_vectorizer.transform([text])
33
  pred = lr_model.predict_proba(x)[0]
34
  return {"neg": pred[0], "pos": pred[1]}
35
+ elif model == "custom BERT":
36
+ pred = F.softmax(bert_model(**bert_tokenizer("I love you", return_tensors="pt")).logits[0], dim=0).tolist()
37
+ return {"neg": pred[0], "pos": pred[1]}
38
 
39
 
40
  demo = gr.Blocks()