Spaces:
Sleeping
Sleeping
File size: 1,984 Bytes
f9706ce 6a2d159 f9278f9 f9706ce f9278f9 c07815e f9278f9 a875def f9278f9 a875def f9278f9 95f5e4b 470c325 9afe62f f9278f9 9afe62f f9278f9 ff4ab6e 9afe62f f9278f9 ff4ab6e a2d03db e41696f c07815e a2d03db e5bdd78 a2d03db f9278f9 f9706ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
import nltk
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from transformers import pipeline
def greet(name):
return "Hello " + name + "!!"
def classify(text):
return {"cat": 0.3, "dog": 0.7}
def predict_sentiment(text):
if model == "finiteautomata/bertweet-base-sentiment-analysis":
# pipe = pipeline("text-classification", model="finiteautomata/bertweet-base-sentiment-analysis")
# out = pipe(text, return_all_scores=True)
# return {pred["label"]: pred["score"] for pred in out[0]}
return {"cathf": 0.3, "doghf": 0.7}
elif model == "vader":
# nltk.download('vader_lexicon')
# sia = SentimentIntensityAnalyzer()
# return sia.polarity_scores(text)
return {"catv": 0.3, "dogv": 0.7}
demo = gr.Blocks()
with demo:
gr.Markdown("A bunch of different Gradio demos in tabs.\n\nNote that generally, the code that is in each tab could be its own Gradio application!")
with gr.Tabs():
with gr.TabItem("Basic Hello"):
gr.Markdown('The most basic "Hello World"-type demo you can write')
interface = gr.Interface(fn=greet, inputs="text", outputs="text")
with gr.TabItem("Label Output"):
gr.Markdown("An example of a basic interface with a classification label as output")
interface = gr.Interface(fn=classify, inputs="text", outputs="label")
with gr.TabItem("Multiple Inputs"):
gr.Markdown("A more complex interface for sentiment analysis with multiple inputs, including a dropdown, and some examples")
demo = gr.Interface(
fn=predict_sentiment,
inputs=[
gr.Textbox(),
# gr.Dropdown(
# ["finiteautomata/bertweet-base-sentiment-analysis", "vader"], label="Model"
# ),
],
outputs="label"
)
demo.launch()
|