File size: 7,488 Bytes
acc4ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "f1390152",
   "metadata": {},
   "source": [
    "# MRKL\n",
    "\n",
    "This notebook showcases using an agent to replicate the MRKL chain."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "39ea3638",
   "metadata": {},
   "source": [
    "This uses the example Chinook database.\n",
    "To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "ac561cc4",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, SQLDatabase, SQLDatabaseChain\n",
    "from langchain.agents import initialize_agent, Tool"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "07e96d99",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = OpenAI(temperature=0)\n",
    "search = SerpAPIWrapper()\n",
    "llm_math_chain = LLMMathChain(llm=llm, verbose=True)\n",
    "db = SQLDatabase.from_uri(\"sqlite:///../../../../notebooks/Chinook.db\")\n",
    "db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)\n",
    "tools = [\n",
    "    Tool(\n",
    "        name = \"Search\",\n",
    "        func=search.run,\n",
    "        description=\"useful for when you need to answer questions about current events. You should ask targeted questions\"\n",
    "    ),\n",
    "    Tool(\n",
    "        name=\"Calculator\",\n",
    "        func=llm_math_chain.run,\n",
    "        description=\"useful for when you need to answer questions about math\"\n",
    "    ),\n",
    "    Tool(\n",
    "        name=\"FooBar DB\",\n",
    "        func=db_chain.run,\n",
    "        description=\"useful for when you need to answer questions about FooBar. Input should be in the form of a question containing full context\"\n",
    "    )\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "a069c4b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "mrkl = initialize_agent(tools, llm, agent=\"zero-shot-react-description\", verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "e603cd7d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3m I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.\n",
      "Action: Search\n",
      "Action Input: \"Who is Leo DiCaprio's girlfriend?\"\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mCamila Morrone\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I need to find out Camila Morrone's age\n",
      "Action: Search\n",
      "Action Input: \"How old is Camila Morrone?\"\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m25 years\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I need to calculate 25 raised to the 0.43 power\n",
      "Action: Calculator\n",
      "Action Input: 25^0.43\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
      "25^0.43\u001b[32;1m\u001b[1;3m\n",
      "```python\n",
      "import math\n",
      "print(math.pow(25, 0.43))\n",
      "```\n",
      "\u001b[0m\n",
      "Answer: \u001b[33;1m\u001b[1;3m3.991298452658078\n",
      "\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[33;1m\u001b[1;3mAnswer: 3.991298452658078\n",
      "\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
      "Final Answer: Camila Morrone is 25 years old and her age raised to the 0.43 power is 3.991298452658078.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Camila Morrone is 25 years old and her age raised to the 0.43 power is 3.991298452658078.'"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "mrkl.run(\"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "a5c07010",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3m I need to find out the artist's full name and then search the FooBar database for their albums.\n",
      "Action: Search\n",
      "Action Input: \"The Storm Before the Calm\" artist\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mThe Storm Before the Calm (stylized in all lowercase) is the tenth (and eighth international) studio album by Canadian-American singer-songwriter Alanis ...\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now need to search the FooBar database for Alanis Morissette's albums\n",
      "Action: FooBar DB\n",
      "Action Input: What albums by Alanis Morissette are in the FooBar database?\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "What albums by Alanis Morissette are in the FooBar database? \n",
      "SQLQuery:\u001b[32;1m\u001b[1;3m SELECT Title FROM Album INNER JOIN Artist ON Album.ArtistId = Artist.ArtistId WHERE Artist.Name = 'Alanis Morissette' LIMIT 5;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[('Jagged Little Pill',)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3m The albums by Alanis Morissette in the FooBar database are Jagged Little Pill.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[38;5;200m\u001b[1;3m The albums by Alanis Morissette in the FooBar database are Jagged Little Pill.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
      "Final Answer: The artist who released the album The Storm Before the Calm is Alanis Morissette and the albums of theirs in the FooBar database are Jagged Little Pill.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'The artist who released the album The Storm Before the Calm is Alanis Morissette and the albums of theirs in the FooBar database are Jagged Little Pill.'"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "mrkl.run(\"What is the full name of the artist who recently released an album called 'The Storm Before the Calm' and are they in the FooBar database? If so, what albums of theirs are in the FooBar database?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "af016a70",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}