Commit
·
be75c32
1
Parent(s):
0e32f4e
reverted app.py to original
Browse files
app.py
CHANGED
@@ -1,204 +1,193 @@
|
|
1 |
-
import asyncio
|
2 |
-
import json
|
3 |
import os
|
4 |
-
from pathlib import Path
|
5 |
|
6 |
-
import aiohttp
|
7 |
import gradio as gr
|
8 |
import pandas as pd
|
|
|
9 |
|
10 |
from agent import Agent
|
|
|
11 |
|
12 |
-
|
13 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
-
CACHE_PATH = Path("answers_cache.json") # local answer cache
|
15 |
-
MAX_CONCURRENCY = int(os.getenv("MAX_CONCURRENCY", 8)) # tune if needed
|
16 |
-
# ----------------------------------------------------------------------------
|
17 |
-
|
18 |
-
|
19 |
-
# ---------------------------------------------------------------------------
|
20 |
-
# Small helpers
|
21 |
-
# ---------------------------------------------------------------------------
|
22 |
-
def load_cache() -> dict[str, str]:
|
23 |
-
if CACHE_PATH.is_file():
|
24 |
-
try:
|
25 |
-
return json.loads(CACHE_PATH.read_text())
|
26 |
-
except Exception:
|
27 |
-
print("⚠️ Cache file corrupt – starting fresh.")
|
28 |
-
return {}
|
29 |
-
|
30 |
-
|
31 |
-
def save_cache(cache: dict[str, str]) -> None:
|
32 |
-
tmp = CACHE_PATH.with_suffix(".tmp")
|
33 |
-
tmp.write_text(json.dumps(cache, ensure_ascii=False, indent=2))
|
34 |
-
tmp.replace(CACHE_PATH)
|
35 |
-
|
36 |
-
|
37 |
-
# ---------------------------------------------------------------------------
|
38 |
-
# Core async logic
|
39 |
-
# ---------------------------------------------------------------------------
|
40 |
-
async def _fetch_questions(
|
41 |
-
session: aiohttp.ClientSession, url: str
|
42 |
-
) -> list[dict]:
|
43 |
-
async with session.get(url, timeout=15) as r:
|
44 |
-
r.raise_for_status()
|
45 |
-
return await r.json()
|
46 |
-
|
47 |
-
|
48 |
-
async def _submit_answers(session: aiohttp.ClientSession, url: str, data: dict):
|
49 |
-
async with session.post(url, json=data, timeout=60) as r:
|
50 |
-
r.raise_for_status()
|
51 |
-
return await r.json()
|
52 |
-
|
53 |
-
|
54 |
-
def _run_agent_sync(
|
55 |
-
agent: Agent,
|
56 |
-
question: str,
|
57 |
-
task_id: str | int,
|
58 |
-
file_name: str,
|
59 |
-
cache: dict[str, str],
|
60 |
-
) -> tuple[str | int, str]:
|
61 |
-
"""
|
62 |
-
Run the agent in a threadpool (because most agents are sync / blocking),
|
63 |
-
respecting concurrency limits, and fill the cache.
|
64 |
-
"""
|
65 |
-
if str(task_id) in cache:
|
66 |
-
return task_id, cache[str(task_id)]
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
cache[str(task_id)] = answer
|
72 |
-
return task_id, answer
|
73 |
|
74 |
|
75 |
-
|
76 |
"""
|
77 |
-
|
|
|
78 |
"""
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
api_url = DEFAULT_API_URL
|
87 |
questions_url = f"{api_url}/questions"
|
88 |
submit_url = f"{api_url}/submit"
|
89 |
|
90 |
-
# 1.
|
91 |
try:
|
92 |
agent = Agent()
|
93 |
except Exception as e:
|
|
|
94 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
95 |
|
96 |
-
# 2. Fetch
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
try:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
if not questions:
|
104 |
-
return "Fetched questions list is empty.", None
|
105 |
-
|
106 |
-
# 3. Run agent with cache
|
107 |
-
cache = load_cache()
|
108 |
-
results = [
|
109 |
-
_run_agent_sync(
|
110 |
-
agent, q["question"], q["task_id"], q["file_name"], cache
|
111 |
)
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
for task_id, answer in results:
|
120 |
-
answers_json.append(
|
121 |
-
{"task_id": task_id, "submitted_answer": answer}
|
122 |
)
|
|
|
|
|
123 |
results_log.append(
|
124 |
{
|
125 |
"Task ID": task_id,
|
126 |
-
"Question":
|
127 |
-
|
128 |
-
q["question"]
|
129 |
-
for q in questions
|
130 |
-
if q["task_id"] == task_id
|
131 |
-
),
|
132 |
-
"",
|
133 |
-
),
|
134 |
-
"Submitted Answer": answer,
|
135 |
}
|
136 |
)
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
try:
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
175 |
|
176 |
|
177 |
-
#
|
178 |
-
# Gradio UI (unchanged except for doc‑string tweaks)
|
179 |
-
# ---------------------------------------------------------------------------
|
180 |
with gr.Blocks() as demo:
|
181 |
-
gr.Markdown("#
|
182 |
-
|
183 |
gr.Markdown(
|
184 |
"""
|
185 |
-
**
|
|
|
|
|
|
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
190 |
"""
|
191 |
)
|
192 |
|
193 |
gr.LoginButton()
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
200 |
-
fn=run_and_submit_all,
|
201 |
-
outputs=[status_box, results_table],
|
202 |
)
|
203 |
|
204 |
if __name__ == "__main__":
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
|
|
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
+
import requests
|
6 |
|
7 |
from agent import Agent
|
8 |
+
from src.tracing import add_tracing
|
9 |
|
10 |
+
add_tracing()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# (Keep Constants as is)
|
13 |
+
# --- Constants ---
|
14 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
15 |
|
16 |
|
17 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
18 |
"""
|
19 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
20 |
+
and displays the results.
|
21 |
"""
|
22 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
23 |
+
space_id = os.getenv(
|
24 |
+
"SPACE_ID"
|
25 |
+
) # Get the SPACE_ID for sending link to the code
|
26 |
+
|
27 |
+
if profile:
|
28 |
+
username = f"{profile.username}"
|
29 |
+
print(f"User logged in: {username}")
|
30 |
+
else:
|
31 |
+
print("User not logged in.")
|
32 |
+
return "Please Login to Hugging Face with the button.", None
|
33 |
|
34 |
api_url = DEFAULT_API_URL
|
35 |
questions_url = f"{api_url}/questions"
|
36 |
submit_url = f"{api_url}/submit"
|
37 |
|
38 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
39 |
try:
|
40 |
agent = Agent()
|
41 |
except Exception as e:
|
42 |
+
print(f"Error instantiating agent: {e}")
|
43 |
return f"Error initializing agent: {e}", None
|
44 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
45 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
46 |
+
print(agent_code)
|
47 |
|
48 |
+
# 2. Fetch Questions
|
49 |
+
print(f"Fetching questions from: {questions_url}")
|
50 |
+
try:
|
51 |
+
response = requests.get(questions_url, timeout=15)
|
52 |
+
response.raise_for_status()
|
53 |
+
questions_data = response.json()
|
54 |
+
if not questions_data:
|
55 |
+
print("Fetched questions list is empty.")
|
56 |
+
return "Fetched questions list is empty or invalid format.", None
|
57 |
+
print(f"Fetched {len(questions_data)} questions.")
|
58 |
+
except requests.exceptions.RequestException as e:
|
59 |
+
print(f"Error fetching questions: {e}")
|
60 |
+
return f"Error fetching questions: {e}", None
|
61 |
+
except requests.exceptions.JSONDecodeError as e:
|
62 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
63 |
+
print(f"Response text: {response.text[:500]}")
|
64 |
+
return f"Error decoding server response for questions: {e}", None
|
65 |
+
except Exception as e:
|
66 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
67 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
68 |
+
|
69 |
+
# 3. Run your Agent
|
70 |
+
results_log = []
|
71 |
+
answers_payload = []
|
72 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
73 |
+
for item in questions_data:
|
74 |
+
task_id = item.get("task_id")
|
75 |
+
question_text = item.get("question")
|
76 |
+
if not task_id or question_text is None:
|
77 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
78 |
+
continue
|
79 |
try:
|
80 |
+
submitted_answer = agent(question_text)
|
81 |
+
answers_payload.append(
|
82 |
+
{"task_id": task_id, "submitted_answer": submitted_answer}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
+
results_log.append(
|
85 |
+
{
|
86 |
+
"Task ID": task_id,
|
87 |
+
"Question": question_text,
|
88 |
+
"Submitted Answer": submitted_answer,
|
89 |
+
}
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
+
except Exception as e:
|
92 |
+
print(f"Error running agent on task {task_id}: {e}")
|
93 |
results_log.append(
|
94 |
{
|
95 |
"Task ID": task_id,
|
96 |
+
"Question": question_text,
|
97 |
+
"Submitted Answer": f"AGENT ERROR: {e}",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
}
|
99 |
)
|
100 |
|
101 |
+
if not answers_payload:
|
102 |
+
print("Agent did not produce any answers to submit.")
|
103 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(
|
104 |
+
results_log
|
105 |
+
)
|
106 |
|
107 |
+
# 4. Prepare Submission
|
108 |
+
submission_data = {
|
109 |
+
"username": username.strip(),
|
110 |
+
"agent_code": agent_code,
|
111 |
+
"answers": answers_payload,
|
112 |
+
}
|
113 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
114 |
+
print(status_update)
|
115 |
+
|
116 |
+
# 5. Submit
|
117 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
118 |
+
try:
|
119 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
120 |
+
response.raise_for_status()
|
121 |
+
result_data = response.json()
|
122 |
+
final_status = (
|
123 |
+
f"Submission Successful!\n"
|
124 |
+
f"User: {result_data.get('username')}\n"
|
125 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
126 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
127 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
128 |
+
)
|
129 |
+
print("Submission successful.")
|
130 |
+
results_df = pd.DataFrame(results_log)
|
131 |
+
return final_status, results_df
|
132 |
+
except requests.exceptions.HTTPError as e:
|
133 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
134 |
try:
|
135 |
+
error_json = e.response.json()
|
136 |
+
error_detail += (
|
137 |
+
f" Detail: {error_json.get('detail', e.response.text)}"
|
138 |
+
)
|
139 |
+
except requests.exceptions.JSONDecodeError:
|
140 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
141 |
+
status_message = f"Submission Failed: {error_detail}"
|
142 |
+
print(status_message)
|
143 |
+
results_df = pd.DataFrame(results_log)
|
144 |
+
return status_message, results_df
|
145 |
+
except requests.exceptions.Timeout:
|
146 |
+
status_message = "Submission Failed: The request timed out."
|
147 |
+
print(status_message)
|
148 |
+
results_df = pd.DataFrame(results_log)
|
149 |
+
return status_message, results_df
|
150 |
+
except requests.exceptions.RequestException as e:
|
151 |
+
status_message = f"Submission Failed: Network error - {e}"
|
152 |
+
print(status_message)
|
153 |
+
results_df = pd.DataFrame(results_log)
|
154 |
+
return status_message, results_df
|
155 |
+
except Exception as e:
|
156 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
157 |
+
print(status_message)
|
158 |
+
results_df = pd.DataFrame(results_log)
|
159 |
+
return status_message, results_df
|
160 |
|
161 |
|
162 |
+
# --- Build Gradio Interface using Blocks ---
|
|
|
|
|
163 |
with gr.Blocks() as demo:
|
164 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
|
165 |
gr.Markdown(
|
166 |
"""
|
167 |
+
**Instructions:**
|
168 |
+
|
169 |
+
1. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
170 |
+
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
171 |
|
172 |
+
---
|
173 |
+
**Disclaimers:**
|
174 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
175 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
176 |
"""
|
177 |
)
|
178 |
|
179 |
gr.LoginButton()
|
180 |
|
181 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
182 |
+
|
183 |
+
status_output = gr.Textbox(
|
184 |
+
label="Run Status / Submission Result", lines=5, interactive=False
|
185 |
+
)
|
186 |
+
# Removed max_rows=10 from DataFrame constructor
|
187 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
188 |
|
189 |
+
run_button.click(
|
190 |
+
fn=run_and_submit_all, outputs=[status_output, results_table]
|
|
|
191 |
)
|
192 |
|
193 |
if __name__ == "__main__":
|