Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
import requests
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
from sentence_transformers import SentenceTransformer, util
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
class URLValidator:
|
10 |
+
"""
|
11 |
+
A production-ready URL validation class that evaluates the credibility of a webpage
|
12 |
+
using multiple factors: domain trust, content relevance, fact-checking, bias detection, and citations.
|
13 |
+
"""
|
14 |
+
|
15 |
+
def __init__(self):
|
16 |
+
# SerpAPI Key
|
17 |
+
self.serpapi_key = os.getenv("SERPAPI_API_KEY")
|
18 |
+
|
19 |
+
# Load models once to avoid redundant API calls
|
20 |
+
self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
21 |
+
self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
|
22 |
+
self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")
|
23 |
+
|
24 |
+
def fetch_page_content(self, url: str) -> str:
|
25 |
+
""" Fetches and extracts text content from the given URL. """
|
26 |
+
try:
|
27 |
+
response = requests.get(url, timeout=10)
|
28 |
+
response.raise_for_status()
|
29 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
30 |
+
return " ".join([p.text for p in soup.find_all("p")]) # Extract paragraph text
|
31 |
+
except requests.RequestException:
|
32 |
+
return "" # Fail gracefully by returning an empty string
|
33 |
+
|
34 |
+
def get_domain_trust(self, url: str, content: str) -> int:
|
35 |
+
""" Computes the domain trust score based on available data sources. """
|
36 |
+
trust_scores = []
|
37 |
+
|
38 |
+
# Hugging Face Fake News Detector
|
39 |
+
if content:
|
40 |
+
try:
|
41 |
+
trust_scores.append(self.get_domain_trust_huggingface(content))
|
42 |
+
except:
|
43 |
+
pass
|
44 |
+
|
45 |
+
# Compute final score (average of available scores)
|
46 |
+
return int(sum(trust_scores) / len(trust_scores)) if trust_scores else 50
|
47 |
+
|
48 |
+
def get_domain_trust_huggingface(self, content: str) -> int:
|
49 |
+
""" Uses a Hugging Face fake news detection model to assess credibility. """
|
50 |
+
if not content:
|
51 |
+
return 50 # Default score if no content available
|
52 |
+
result = self.fake_news_classifier(content[:512])[0] # Process only first 512 characters
|
53 |
+
return 100 if result["label"] == "REAL" else 30 if result["label"] == "FAKE" else 50
|
54 |
+
|
55 |
+
def compute_similarity_score(self, user_query: str, content: str) -> int:
|
56 |
+
""" Computes semantic similarity between user query and page content. """
|
57 |
+
if not content:
|
58 |
+
return 0
|
59 |
+
return int(util.pytorch_cos_sim(self.similarity_model.encode(user_query), self.similarity_model.encode(content)).item() * 100)
|
60 |
+
|
61 |
+
def check_facts(self, content: str) -> int:
|
62 |
+
""" Cross-checks extracted content with Google Fact Check API. """
|
63 |
+
if not content:
|
64 |
+
return 50
|
65 |
+
api_url = f"https://toolbox.google.com/factcheck/api/v1/claimsearch?query={content[:200]}"
|
66 |
+
try:
|
67 |
+
response = requests.get(api_url)
|
68 |
+
data = response.json()
|
69 |
+
return 80 if "claims" in data and data["claims"] else 40
|
70 |
+
except:
|
71 |
+
return 50 # Default uncertainty score
|
72 |
+
|
73 |
+
def check_google_scholar(self, url: str) -> int:
|
74 |
+
""" Checks Google Scholar citations using SerpAPI. """
|
75 |
+
serpapi_key = self.serpapi_key
|
76 |
+
params = {"q": url, "engine": "google_scholar", "api_key": serpapi_key}
|
77 |
+
try:
|
78 |
+
response = requests.get("https://serpapi.com/search", params=params)
|
79 |
+
data = response.json()
|
80 |
+
return min(len(data.get("organic_results", [])) * 10, 100) # Normalize
|
81 |
+
except:
|
82 |
+
return 0 # Default to no citations
|
83 |
+
|
84 |
+
def detect_bias(self, content: str) -> int:
|
85 |
+
""" Uses NLP sentiment analysis to detect potential bias in content. """
|
86 |
+
if not content:
|
87 |
+
return 50
|
88 |
+
sentiment_result = self.sentiment_analyzer(content[:512])[0]
|
89 |
+
return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30
|
90 |
+
|
91 |
+
def get_star_rating(self, score: float) -> tuple:
|
92 |
+
""" Converts a score (0-100) into a 1-5 star rating. """
|
93 |
+
stars = max(1, min(5, round(score / 20))) # Normalize 100-scale to 5-star scale
|
94 |
+
return stars, "⭐" * stars
|
95 |
+
|
96 |
+
def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, citation_score, final_score) -> str:
|
97 |
+
""" Generates a human-readable explanation for the score. """
|
98 |
+
reasons = []
|
99 |
+
if domain_trust < 50:
|
100 |
+
reasons.append("The source has low domain authority.")
|
101 |
+
if similarity_score < 50:
|
102 |
+
reasons.append("The content is not highly relevant to your query.")
|
103 |
+
if fact_check_score < 50:
|
104 |
+
reasons.append("Limited fact-checking verification found.")
|
105 |
+
if bias_score < 50:
|
106 |
+
reasons.append("Potential bias detected in the content.")
|
107 |
+
if citation_score < 30:
|
108 |
+
reasons.append("Few citations found for this content.")
|
109 |
+
|
110 |
+
return " ".join(reasons) if reasons else "This source is highly credible and relevant."
|
111 |
+
|
112 |
+
def rate_url_validity(self, user_query: str, url: str) -> dict:
|
113 |
+
""" Main function to evaluate the validity of a webpage. """
|
114 |
+
content = self.fetch_page_content(url)
|
115 |
+
|
116 |
+
domain_trust = self.get_domain_trust(url, content)
|
117 |
+
similarity_score = self.compute_similarity_score(user_query, content)
|
118 |
+
fact_check_score = self.check_facts(content)
|
119 |
+
bias_score = self.detect_bias(content)
|
120 |
+
citation_score = self.check_google_scholar(url)
|
121 |
+
|
122 |
+
final_score = (
|
123 |
+
(0.3 * domain_trust) +
|
124 |
+
(0.3 * similarity_score) +
|
125 |
+
(0.2 * fact_check_score) +
|
126 |
+
(0.1 * bias_score) +
|
127 |
+
(0.1 * citation_score)
|
128 |
+
)
|
129 |
+
|
130 |
+
stars, icon = self.get_star_rating(final_score)
|
131 |
+
explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, citation_score, final_score)
|
132 |
+
|
133 |
+
return {
|
134 |
+
"raw_score": {
|
135 |
+
"Domain Trust": domain_trust,
|
136 |
+
"Content Relevance": similarity_score,
|
137 |
+
"Fact-Check Score": fact_check_score,
|
138 |
+
"Bias Score": bias_score,
|
139 |
+
"Citation Score": citation_score,
|
140 |
+
"Final Validity Score": final_score
|
141 |
+
},
|
142 |
+
"stars": {
|
143 |
+
"score": stars,
|
144 |
+
"icon": icon
|
145 |
+
},
|
146 |
+
"explanation": explanation
|
147 |
+
}
|
148 |
+
|
149 |
+
|
150 |
+
st.write("# LEVEL1 TITLE: APP")
|
151 |
+
st.write("this is my first app")
|
152 |
+
|
153 |
+
# User input fields
|
154 |
+
user_prompt = st.text_area("Enter your search query:", "I have just been on an international flight, can I come back home to hold my 1-month-old newborn?")
|
155 |
+
url_to_check = st.text_input("Enter the URL to validate:", "https://www.mayoclinic.org/healthy-lifestyle/infant-and-toddler-health/expert-answers/air-travel-with-infant/faq-20058539")
|
156 |
+
|
157 |
+
# Run validation when the button is clicked
|
158 |
+
if st.button("Validate URL"):
|
159 |
+
if not user_prompt.strip() or not url_to_check.strip():
|
160 |
+
st.warning("Please enter both a search query and a URL.")
|
161 |
+
else:
|
162 |
+
with st.spinner("Validating URL..."):
|
163 |
+
# Instantiate the URLValidator class
|
164 |
+
validator = URLValidator()
|
165 |
+
result = validator.rate_url_validity(user_prompt, url_to_check)
|
166 |
+
|
167 |
+
# Display results in JSON format
|
168 |
+
st.subheader("Validation Results")
|
169 |
+
st.json(result)
|
170 |
+
|