# AUTOGENERATED! DO NOT EDIT! File to edit: ../app.ipynb. # %% auto 0 __all__ = ['example_image_paths', 'learn', 'categories', 'image', 'label', 'intf', 'classify_image'] # %% ../app.ipynb 2 from fastai.vision.all import * from PIL import Image import matplotlib.pyplot as plt import gradio as gr from nbdev.export import nb_export # %% ../app.ipynb 4 example_image_paths = [ 'images/tfh-dogs-alcohol.jpg', 'images/dbt-techy-things.jpg', 'images/pbs-book-festival.jpg', 'images/hth-underwear.jpg', 'images/xk-compiling.jpg', 'images/rwo-family-reunion.jpg', 'images/itb-golf-saucer.jpg' ] # %% ../app.ipynb 6 learn = load_learner('models/02.pkl') # %% ../app.ipynb 8 categories = ('tfs', 'xk', 'dbt', 'pbs', 'rwo', 'hth', 'itb') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(sorted(categories), map(float, probs))) # %% ../app.ipynb 10 image = gr.Image(height=192, width=192) label = gr.Label() intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example_image_paths) intf.launch(inline=False, share=True)