Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,26 +5,32 @@ from diffusers import AutoencoderKL
|
|
5 |
import numpy as np
|
6 |
import gradio as gr
|
7 |
|
8 |
-
# Configure device and
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
|
11 |
-
print(f"Using device: {device}
|
12 |
|
13 |
# Initialize medical imaging components
|
14 |
def load_medical_models():
|
15 |
try:
|
16 |
-
processor
|
|
|
|
|
|
|
|
|
17 |
|
|
|
18 |
model = MultiModalityCausalLM.from_pretrained(
|
19 |
"deepseek-ai/Janus-1.3B",
|
20 |
-
torch_dtype=
|
21 |
-
attn_implementation=
|
22 |
-
|
23 |
).to(device).eval()
|
24 |
|
|
|
25 |
vae = AutoencoderKL.from_pretrained(
|
26 |
"stabilityai/sdxl-vae",
|
27 |
-
torch_dtype=
|
28 |
).to(device).eval()
|
29 |
|
30 |
return processor, model, vae
|
@@ -34,31 +40,40 @@ def load_medical_models():
|
|
34 |
|
35 |
processor, model, vae = load_medical_models()
|
36 |
|
37 |
-
# Medical image analysis function
|
38 |
def medical_analysis(image, question, seed=42):
|
39 |
try:
|
|
|
40 |
torch.manual_seed(seed)
|
41 |
np.random.seed(seed)
|
42 |
|
|
|
43 |
if isinstance(image, np.ndarray):
|
44 |
image = Image.fromarray(image).convert("RGB")
|
45 |
|
|
|
46 |
inputs = processor(
|
47 |
text=f"<medical_query>{question}</medical_query>",
|
48 |
images=[image],
|
49 |
-
return_tensors="pt"
|
|
|
|
|
50 |
).to(device)
|
51 |
|
|
|
52 |
outputs = model.generate(
|
53 |
inputs.input_ids,
|
54 |
attention_mask=inputs.attention_mask,
|
55 |
max_new_tokens=512,
|
56 |
temperature=0.1,
|
57 |
top_p=0.95,
|
58 |
-
pad_token_id=processor.tokenizer.eos_token_id
|
|
|
59 |
)
|
60 |
|
61 |
-
return
|
|
|
|
|
62 |
except Exception as e:
|
63 |
return f"Radiology analysis error: {str(e)}"
|
64 |
|
@@ -70,11 +85,14 @@ with gr.Blocks(title="Medical Imaging Assistant", theme=gr.themes.Soft()) as dem
|
|
70 |
with gr.Tab("Diagnostic Imaging"):
|
71 |
with gr.Row():
|
72 |
med_image = gr.Image(label="DICOM Image", type="pil")
|
73 |
-
med_question = gr.Textbox(
|
74 |
-
|
|
|
|
|
75 |
analysis_btn = gr.Button("Analyze", variant="primary")
|
76 |
report_output = gr.Textbox(label="Radiology Report", interactive=False)
|
77 |
|
|
|
78 |
med_question.submit(
|
79 |
medical_analysis,
|
80 |
inputs=[med_image, med_question],
|
@@ -86,4 +104,10 @@ with gr.Blocks(title="Medical Imaging Assistant", theme=gr.themes.Soft()) as dem
|
|
86 |
outputs=report_output
|
87 |
)
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import numpy as np
|
6 |
import gradio as gr
|
7 |
|
8 |
+
# Configure device and disable FlashAttention
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
11 |
+
print(f"Using device: {device}")
|
12 |
|
13 |
# Initialize medical imaging components
|
14 |
def load_medical_models():
|
15 |
try:
|
16 |
+
# Load processor with medical-specific configuration
|
17 |
+
processor = VLChatProcessor.from_pretrained(
|
18 |
+
"deepseek-ai/Janus-1.3B",
|
19 |
+
medical_mode=True
|
20 |
+
)
|
21 |
|
22 |
+
# Load model with CPU/GPU optimization
|
23 |
model = MultiModalityCausalLM.from_pretrained(
|
24 |
"deepseek-ai/Janus-1.3B",
|
25 |
+
torch_dtype=torch_dtype,
|
26 |
+
attn_implementation="eager", # Force standard attention
|
27 |
+
low_cpu_mem_usage=True
|
28 |
).to(device).eval()
|
29 |
|
30 |
+
# Load VAE with reduced precision
|
31 |
vae = AutoencoderKL.from_pretrained(
|
32 |
"stabilityai/sdxl-vae",
|
33 |
+
torch_dtype=torch_dtype
|
34 |
).to(device).eval()
|
35 |
|
36 |
return processor, model, vae
|
|
|
40 |
|
41 |
processor, model, vae = load_medical_models()
|
42 |
|
43 |
+
# Medical image analysis function
|
44 |
def medical_analysis(image, question, seed=42):
|
45 |
try:
|
46 |
+
# Set random seed for reproducibility
|
47 |
torch.manual_seed(seed)
|
48 |
np.random.seed(seed)
|
49 |
|
50 |
+
# Convert and validate input image
|
51 |
if isinstance(image, np.ndarray):
|
52 |
image = Image.fromarray(image).convert("RGB")
|
53 |
|
54 |
+
# Prepare medical-specific input
|
55 |
inputs = processor(
|
56 |
text=f"<medical_query>{question}</medical_query>",
|
57 |
images=[image],
|
58 |
+
return_tensors="pt",
|
59 |
+
max_length=512,
|
60 |
+
truncation=True
|
61 |
).to(device)
|
62 |
|
63 |
+
# Generate medical analysis
|
64 |
outputs = model.generate(
|
65 |
inputs.input_ids,
|
66 |
attention_mask=inputs.attention_mask,
|
67 |
max_new_tokens=512,
|
68 |
temperature=0.1,
|
69 |
top_p=0.95,
|
70 |
+
pad_token_id=processor.tokenizer.eos_token_id,
|
71 |
+
do_sample=True
|
72 |
)
|
73 |
|
74 |
+
# Clean and return medical report
|
75 |
+
report = processor.decode(outputs[0], skip_special_tokens=True)
|
76 |
+
return report.replace("##MEDICAL_REPORT##", "").strip()
|
77 |
except Exception as e:
|
78 |
return f"Radiology analysis error: {str(e)}"
|
79 |
|
|
|
85 |
with gr.Tab("Diagnostic Imaging"):
|
86 |
with gr.Row():
|
87 |
med_image = gr.Image(label="DICOM Image", type="pil")
|
88 |
+
med_question = gr.Textbox(
|
89 |
+
label="Clinical Query",
|
90 |
+
placeholder="Describe findings in this CT scan..."
|
91 |
+
)
|
92 |
analysis_btn = gr.Button("Analyze", variant="primary")
|
93 |
report_output = gr.Textbox(label="Radiology Report", interactive=False)
|
94 |
|
95 |
+
# Connect components
|
96 |
med_question.submit(
|
97 |
medical_analysis,
|
98 |
inputs=[med_image, med_question],
|
|
|
104 |
outputs=report_output
|
105 |
)
|
106 |
|
107 |
+
# Launch with CPU optimization
|
108 |
+
demo.launch(
|
109 |
+
server_name="0.0.0.0",
|
110 |
+
server_port=7860,
|
111 |
+
enable_queue=True,
|
112 |
+
max_threads=2
|
113 |
+
)
|