Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from transformers import AutoConfig, AutoModelForCausalLM
|
4 |
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
5 |
from janus.utils.io import load_pil_images
|
6 |
from PIL import Image
|
7 |
-
import numpy as np
|
8 |
-
import os
|
9 |
-
import time
|
10 |
import spaces
|
|
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
model_path = "deepseek-ai/Janus-Pro-1B"
|
14 |
config = AutoConfig.from_pretrained(model_path)
|
15 |
language_config = config.language_config
|
16 |
language_config._attn_implementation = 'eager'
|
17 |
|
18 |
-
# Initialize model with medical
|
19 |
vl_gpt = AutoModelForCausalLM.from_pretrained(
|
20 |
model_path,
|
21 |
language_config=language_config,
|
22 |
trust_remote_code=True,
|
23 |
-
|
|
|
|
|
24 |
).to(torch.bfloat16 if torch.cuda.is_available() else torch.float16)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
if torch.cuda.is_available():
|
27 |
vl_gpt = vl_gpt.cuda()
|
28 |
|
@@ -30,27 +57,41 @@ vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
|
30 |
tokenizer = vl_chat_processor.tokenizer
|
31 |
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
@torch.inference_mode()
|
34 |
@spaces.GPU(duration=120)
|
35 |
-
def medical_image_analysis(
|
36 |
-
"""Analyze medical images (CT, MRI, X-ray, histopathology) with clinical context."""
|
37 |
torch.cuda.empty_cache()
|
38 |
torch.manual_seed(seed)
|
39 |
|
40 |
-
#
|
|
|
|
|
41 |
conversation = [{
|
42 |
"role": "<|Radiologist|>",
|
43 |
-
"content": f"<medical_image>\nClinical Context: {
|
44 |
"images": [medical_image],
|
45 |
}, {"role": "<|AI_Assistant|>", "content": ""}]
|
46 |
|
47 |
-
processed_image = [Image.fromarray(medical_image)]
|
48 |
inputs = vl_chat_processor(
|
49 |
-
conversations=conversation,
|
50 |
-
images=
|
51 |
force_batchify=True
|
52 |
-
).to(cuda_device
|
53 |
-
|
54 |
inputs_embeds = vl_gpt.prepare_inputs_embeds(**inputs)
|
55 |
|
56 |
# Medical-optimized generation parameters
|
@@ -58,115 +99,161 @@ def medical_image_analysis(medical_image, clinical_question, seed, top_p, temper
|
|
58 |
inputs_embeds=inputs_embeds,
|
59 |
attention_mask=inputs.attention_mask,
|
60 |
max_new_tokens=512,
|
61 |
-
temperature=0.2,
|
62 |
top_p=0.9,
|
63 |
-
|
64 |
-
|
|
|
65 |
)
|
66 |
|
67 |
-
|
68 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
|
|
70 |
@torch.inference_mode()
|
71 |
@spaces.GPU(duration=120)
|
72 |
-
def generate_medical_image(prompt, seed=
|
73 |
-
"""Generate synthetic medical images for educational/research purposes."""
|
74 |
torch.cuda.empty_cache()
|
75 |
if seed is not None:
|
76 |
torch.manual_seed(seed)
|
77 |
-
|
78 |
-
|
79 |
-
medical_config = {
|
80 |
-
'width': 512,
|
81 |
-
'height': 512,
|
82 |
-
'parallel_size': 3,
|
83 |
-
'modality': 'mri', # Can specify CT, X-ray, etc.
|
84 |
-
'anatomy': 'brain' # Target anatomy
|
85 |
-
}
|
86 |
|
87 |
messages = [{
|
88 |
'role': '<|Clinician|>',
|
89 |
-
'content':
|
90 |
}]
|
91 |
|
92 |
-
text = vl_chat_processor.
|
93 |
messages,
|
94 |
-
system_prompt='Generate
|
95 |
)
|
96 |
|
97 |
input_ids = torch.LongTensor(tokenizer.encode(text)).to(cuda_device)
|
98 |
-
|
|
|
|
|
99 |
input_ids,
|
100 |
-
|
|
|
101 |
cfg_weight=guidance,
|
102 |
-
temperature=
|
|
|
|
|
|
|
103 |
)
|
104 |
|
105 |
-
|
106 |
-
synthetic_images = postprocess_medical_images(patches, **medical_config)
|
107 |
return [Image.fromarray(img).resize((512, 512)) for img in synthetic_images]
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
with gr.Tab("Clinical Image Analysis"):
|
|
|
115 |
with gr.Row():
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
examples=[
|
130 |
-
["Identify pulmonary nodules in this CT scan", "ct_chest.png"],
|
131 |
-
["Assess MRI for multiple sclerosis lesions", "brain_mri.jpg"],
|
132 |
-
["Histopathology analysis: tumor grading", "biopsy_slide.png"]
|
133 |
-
],
|
134 |
-
inputs=[clinical_question, medical_image_input]
|
135 |
-
)
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
142 |
with gr.Row():
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
#
|
160 |
analysis_btn.click(
|
161 |
medical_image_analysis,
|
162 |
-
|
163 |
-
|
164 |
)
|
165 |
|
166 |
-
|
167 |
generate_medical_image,
|
168 |
-
|
169 |
-
|
170 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
demo.launch(share=True, server_port=7860)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import numpy as np
|
4 |
from transformers import AutoConfig, AutoModelForCausalLM
|
5 |
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
6 |
from janus.utils.io import load_pil_images
|
7 |
from PIL import Image
|
|
|
|
|
|
|
8 |
import spaces
|
9 |
+
from torchvision import transforms
|
10 |
|
11 |
+
# Medical Imaging Configuration
|
12 |
+
MEDICAL_CONFIG = {
|
13 |
+
"modality": "CT", # Default imaging modality
|
14 |
+
"anatomical_region": "Chest",
|
15 |
+
"clinical_task": "analysis",
|
16 |
+
"report_style": "structured"
|
17 |
+
}
|
18 |
+
|
19 |
+
# Load base model
|
20 |
model_path = "deepseek-ai/Janus-Pro-1B"
|
21 |
config = AutoConfig.from_pretrained(model_path)
|
22 |
language_config = config.language_config
|
23 |
language_config._attn_implementation = 'eager'
|
24 |
|
25 |
+
# Initialize model with medical adaptations
|
26 |
vl_gpt = AutoModelForCausalLM.from_pretrained(
|
27 |
model_path,
|
28 |
language_config=language_config,
|
29 |
trust_remote_code=True,
|
30 |
+
hidden_dropout_prob=0.1,
|
31 |
+
attention_probs_dropout_prob=0.1,
|
32 |
+
output_attentions=True
|
33 |
).to(torch.bfloat16 if torch.cuda.is_available() else torch.float16)
|
34 |
|
35 |
+
# Add medical projection layer
|
36 |
+
class MedicalProjectionWrapper(torch.nn.Module):
|
37 |
+
def __init__(self, base_model):
|
38 |
+
super().__init__()
|
39 |
+
self.base_model = base_model
|
40 |
+
self.medical_proj = torch.nn.Linear(
|
41 |
+
base_model.config.hidden_size,
|
42 |
+
base_model.config.hidden_size * 2
|
43 |
+
)
|
44 |
+
self.activation = torch.nn.GELU()
|
45 |
+
|
46 |
+
def forward(self, *args, **kwargs):
|
47 |
+
outputs = self.base_model(*args, **kwargs)
|
48 |
+
medical_rep = self.activation(self.medical_proj(outputs.last_hidden_state))
|
49 |
+
return outputs.__class__(last_hidden_state=medical_rep)
|
50 |
+
|
51 |
+
vl_gpt.language_model = MedicalProjectionWrapper(vl_gpt.language_model)
|
52 |
+
|
53 |
if torch.cuda.is_available():
|
54 |
vl_gpt = vl_gpt.cuda()
|
55 |
|
|
|
57 |
tokenizer = vl_chat_processor.tokenizer
|
58 |
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
59 |
|
60 |
+
# Medical image preprocessing
|
61 |
+
def preprocess_medical_image(image):
|
62 |
+
if isinstance(image, np.ndarray):
|
63 |
+
image = Image.fromarray(image)
|
64 |
+
|
65 |
+
medical_transforms = transforms.Compose([
|
66 |
+
transforms.Resize((512, 512)),
|
67 |
+
transforms.Grayscale(num_output_channels=3),
|
68 |
+
transforms.ToTensor(),
|
69 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
70 |
+
])
|
71 |
+
|
72 |
+
return medical_transforms(image).unsqueeze(0).to(cuda_device)
|
73 |
+
|
74 |
@torch.inference_mode()
|
75 |
@spaces.GPU(duration=120)
|
76 |
+
def medical_image_analysis(image, clinical_query, seed=42):
|
|
|
77 |
torch.cuda.empty_cache()
|
78 |
torch.manual_seed(seed)
|
79 |
|
80 |
+
# Preprocess with medical transformations
|
81 |
+
medical_image = preprocess_medical_image(image)
|
82 |
+
|
83 |
conversation = [{
|
84 |
"role": "<|Radiologist|>",
|
85 |
+
"content": f"<medical_image>\nClinical Context: {clinical_query}",
|
86 |
"images": [medical_image],
|
87 |
}, {"role": "<|AI_Assistant|>", "content": ""}]
|
88 |
|
|
|
89 |
inputs = vl_chat_processor(
|
90 |
+
conversations=conversation,
|
91 |
+
images=[Image.fromarray(image)],
|
92 |
force_batchify=True
|
93 |
+
).to(cuda_device)
|
94 |
+
|
95 |
inputs_embeds = vl_gpt.prepare_inputs_embeds(**inputs)
|
96 |
|
97 |
# Medical-optimized generation parameters
|
|
|
99 |
inputs_embeds=inputs_embeds,
|
100 |
attention_mask=inputs.attention_mask,
|
101 |
max_new_tokens=512,
|
102 |
+
temperature=0.2,
|
103 |
top_p=0.9,
|
104 |
+
num_beams=5,
|
105 |
+
repetition_penalty=1.5,
|
106 |
+
early_stopping=True
|
107 |
)
|
108 |
|
109 |
+
report = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
110 |
+
return format_medical_report(report)
|
111 |
+
|
112 |
+
def format_medical_report(raw_text):
|
113 |
+
sections = {
|
114 |
+
"Findings": "",
|
115 |
+
"Impression": "",
|
116 |
+
"Recommendations": ""
|
117 |
+
}
|
118 |
+
|
119 |
+
current_section = None
|
120 |
+
for line in raw_text.split('\n'):
|
121 |
+
if "FINDINGS:" in line:
|
122 |
+
current_section = "Findings"
|
123 |
+
elif "IMPRESSION:" in line:
|
124 |
+
current_section = "Impression"
|
125 |
+
elif "RECOMMENDATIONS:" in line:
|
126 |
+
current_section = "Recommendations"
|
127 |
+
elif current_section:
|
128 |
+
sections[current_section] += line.strip() + '\n'
|
129 |
+
|
130 |
+
return f"""**Clinical Report**
|
131 |
+
|
132 |
+
**Findings:**
|
133 |
+
{sections['Findings'] or 'No significant findings'}
|
134 |
+
|
135 |
+
**Impression:**
|
136 |
+
{sections['Impression'] or 'No conclusive diagnosis'}
|
137 |
+
|
138 |
+
**Recommendations:**
|
139 |
+
{sections['Recommendations'] or 'Follow-up as clinically indicated'}"""
|
140 |
|
141 |
+
# Medical image generation components
|
142 |
@torch.inference_mode()
|
143 |
@spaces.GPU(duration=120)
|
144 |
+
def generate_medical_image(prompt, seed=12345, guidance=7, temperature=0.6):
|
|
|
145 |
torch.cuda.empty_cache()
|
146 |
if seed is not None:
|
147 |
torch.manual_seed(seed)
|
148 |
+
|
149 |
+
medical_prompt = f"{prompt} [Modality: {MEDICAL_CONFIG['modality']}, Anatomy: {MEDICAL_CONFIG['anatomical_region']}]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
messages = [{
|
152 |
'role': '<|Clinician|>',
|
153 |
+
'content': medical_prompt
|
154 |
}]
|
155 |
|
156 |
+
text = vl_chat_processor.apply_chat_template(
|
157 |
messages,
|
158 |
+
system_prompt='Generate educational medical imaging data'
|
159 |
)
|
160 |
|
161 |
input_ids = torch.LongTensor(tokenizer.encode(text)).to(cuda_device)
|
162 |
+
|
163 |
+
# Medical image generation parameters
|
164 |
+
generated_tokens, patches = vl_gpt.generate(
|
165 |
input_ids,
|
166 |
+
width=512,
|
167 |
+
height=512,
|
168 |
cfg_weight=guidance,
|
169 |
+
temperature=temperature,
|
170 |
+
parallel_size=3,
|
171 |
+
image_token_num_per_image=576,
|
172 |
+
patch_size=16
|
173 |
)
|
174 |
|
175 |
+
synthetic_images = postprocess_medical_images(patches)
|
|
|
176 |
return [Image.fromarray(img).resize((512, 512)) for img in synthetic_images]
|
177 |
|
178 |
+
def postprocess_medical_images(patches):
|
179 |
+
patches = patches.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
180 |
+
patches = np.clip((patches + 1) / 2 * 255, 0, 255).astype(np.uint8)
|
181 |
+
return [patches[i] for i in range(patches.shape[0])]
|
182 |
+
|
183 |
+
# Medical-optimized interface
|
184 |
+
with gr.Blocks(title="Medical Imaging AI", theme=gr.themes.Soft()) as demo:
|
185 |
+
gr.Markdown("""## Medical Imaging Analysis Suite v3.2
|
186 |
+
*Research use only - Not for clinical decision-making*""")
|
187 |
|
188 |
with gr.Tab("Clinical Image Analysis"):
|
189 |
+
gr.Markdown("### Upload medical scan and clinical context")
|
190 |
with gr.Row():
|
191 |
+
with gr.Column(scale=1):
|
192 |
+
med_image = gr.Image(label="Medical Imaging Study", type="numpy")
|
193 |
+
med_upload_btns = gr.Row([
|
194 |
+
gr.Button("CT Scan"),
|
195 |
+
gr.Button("MRI"),
|
196 |
+
gr.Button("X-ray")
|
197 |
+
])
|
198 |
+
|
199 |
+
with gr.Column(scale=2):
|
200 |
+
clinical_input = gr.Textbox(label="Clinical Context", lines=3,
|
201 |
+
placeholder="Patient history and clinical question...")
|
202 |
+
analysis_btn = gr.Button("Analyze Study", variant="primary")
|
203 |
+
report_output = gr.Markdown(label="AI Analysis Report")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
gr.Examples([
|
206 |
+
["Evaluate lung nodules in this CT scan", "ct_chest.png"],
|
207 |
+
["Assess brain MRI for metastatic lesions", "brain_mri.jpg"],
|
208 |
+
["Analyze bone structure in this wrist X-ray", "wrist_xray.png"]
|
209 |
+
], [clinical_input, med_image])
|
210 |
+
|
211 |
+
with gr.Tab("Educational Image Synthesis"):
|
212 |
+
gr.Markdown("### Generate synthetic medical images for training")
|
213 |
with gr.Row():
|
214 |
+
with gr.Column():
|
215 |
+
synth_prompt = gr.Textbox(label="Synthesis Prompt", lines=2,
|
216 |
+
placeholder="Describe the desired medical image...")
|
217 |
+
gr.Markdown("**Modality Options**")
|
218 |
+
modality_btns = gr.Row([
|
219 |
+
gr.Button("CT"),
|
220 |
+
gr.Button("MRI"),
|
221 |
+
gr.Button("X-ray")
|
222 |
+
])
|
223 |
+
|
224 |
+
with gr.Column():
|
225 |
+
synth_params = gr.Accordion("Advanced Parameters", open=False)
|
226 |
+
with synth_params:
|
227 |
+
gr.Row([
|
228 |
+
gr.Slider(3, 7, 5, label="Anatomical Accuracy"),
|
229 |
+
gr.Slider(0.3, 1.0, 0.6, label="Synthesis Variability")
|
230 |
+
])
|
231 |
+
generate_btn = gr.Button("Generate Educational Images", variant="secondary")
|
232 |
+
|
233 |
+
synth_gallery = gr.Gallery(label="Synthetic Images", columns=3, height=400)
|
234 |
|
235 |
+
# Event handlers
|
236 |
analysis_btn.click(
|
237 |
medical_image_analysis,
|
238 |
+
[med_image, clinical_input],
|
239 |
+
report_output
|
240 |
)
|
241 |
|
242 |
+
generate_btn.click(
|
243 |
generate_medical_image,
|
244 |
+
[synth_prompt, synth_params],
|
245 |
+
synth_gallery
|
246 |
)
|
247 |
+
|
248 |
+
for btn in [*med_upload_btns.children, *modality_btns.children]:
|
249 |
+
btn.click(
|
250 |
+
lambda m: MEDICAL_CONFIG.update(modality=m),
|
251 |
+
[btn],
|
252 |
+
None
|
253 |
+
).then(
|
254 |
+
lambda: gr.Info(f"Modality set to {MEDICAL_CONFIG['modality']}"),
|
255 |
+
None,
|
256 |
+
None
|
257 |
+
)
|
258 |
|
259 |
demo.launch(share=True, server_port=7860)
|