project / app.py
mewmnp's picture
Update app.py
ce6935d
raw
history blame
553 Bytes
import streamlit as st
from sklearn import neighbors, datasets
with st.form(key='my_form'):
sLen = st.slider('sepal length(cm) ', 0.0, 10.0)
sWid = st.slider('sepal width(cm) ', 0.0, 10.0)
pLen = st.slider('petal length(cm) ', 0.0, 10.0)
pWid = st.slider('petal width(cm) ', 0.0, 10.0)
st.form_submit_button('Predict')
iris = datasets.load_iris()
x,y = iris.data, iris.target
knn = neighbors.KNeighborsClassifier(n_neighbors=6)
knn.fit(x,y)
predict = knn.predict([[sLen,sWid,pLen,pWid]])
st.write(iris.target_names[predict([[3,5,4,2]])])