File size: 539 Bytes
d2e743c ce6935d 2bcd631 5e4aca1 ce6935d 5e4aca1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
import streamlit as st
from sklearn import neighbors, datasets
with st.form(key='my_form'):
sLen = st.slider('sepal length(cm) ', 0.0, 10.0)
sWid = st.slider('sepal width(cm) ', 0.0, 10.0)
pLen = st.slider('petal length(cm) ', 0.0, 10.0)
pWid = st.slider('petal width(cm) ', 0.0, 10.0)
st.form_submit_button('predict')
iris = datasets.load_iris()
x,y = iris.data, iris.target
knn = neighbors.KNeighborsClassifier(n_neighbors=6)
knn.fit(x,y)
predict = knn.predict([[sLen,sWid,pLen,pWid]])
st.text(iris.target_names[predict]) |