metek7 commited on
Commit
0a5443f
·
verified ·
1 Parent(s): 2d10b16

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -138
app.py CHANGED
@@ -1,154 +1,100 @@
 
1
  import gradio as gr
2
- import numpy as np
 
 
3
  import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
 
 
 
 
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
 
 
 
 
38
 
39
- generator = torch.Generator().manual_seed(seed)
 
 
 
 
40
 
 
41
  image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
  width=width,
47
  height=height,
48
  generator=generator,
 
49
  ).images[0]
50
 
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ import spaces
2
  import gradio as gr
3
+ import torch
4
+ from PIL import Image
5
+ from diffusers import DiffusionPipeline
6
  import random
7
 
8
+ torch.backends.cudnn.deterministic = True
9
+ torch.backends.cudnn.benchmark = False
10
+ torch.backends.cuda.matmul.allow_tf32 = True
11
+
12
+ # Initialize the base model and specific LoRA
13
+ base_model = "black-forest-labs/FLUX.1-dev"
14
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
15
 
16
+ lora_repo = "XLabs-AI/flux-RealismLora"
17
+ trigger_word = "" # Leave trigger_word blank if not used.
18
+ pipe.load_lora_weights(lora_repo)
19
+
20
+ pipe.to("cuda")
21
+
22
+ MAX_SEED = 2**32-1
23
+
24
+ @spaces.GPU()
25
+ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
26
+ # Set random seed for reproducibility
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  if randomize_seed:
28
  seed = random.randint(0, MAX_SEED)
29
+ generator = torch.Generator(device="cuda").manual_seed(seed)
30
+
31
+ # Update progress bar (0% saat mulai)
32
+ progress(0, "Starting image generation...")
33
 
34
+ # Generate image with progress updates
35
+ for i in range(1, steps + 1):
36
+ # Simulate the processing step (in a real scenario, you would integrate this with your image generation process)
37
+ if i % (steps // 10) == 0: # Update every 10% of the steps
38
+ progress(i / steps * 100, f"Processing step {i} of {steps}...")
39
 
40
+ # Generate image using the pipeline
41
  image = pipe(
42
+ prompt=f"{prompt} {trigger_word}",
43
+ num_inference_steps=steps,
44
+ guidance_scale=cfg_scale,
 
45
  width=width,
46
  height=height,
47
  generator=generator,
48
+ joint_attention_kwargs={"scale": lora_scale},
49
  ).images[0]
50
 
51
+ # Final update (100%)
52
+ progress(100, "Completed!")
53
+
54
+ yield image, seed
55
+
56
+ # Example cached image and settings
57
+ example_image_path = "example0.webp" # Replace with the actual path to the example image
58
+ example_prompt = """A Jelita Sukawati speaker is captured mid-speech. She has long, dark brown hair that cascades over her shoulders, framing her radiant, smiling face. Her Latina features are highlighted by warm, sun-kissed skin and bright, expressive eyes. She gestures with her left hand, displaying a delicate ring on her pinky finger, as she speaks passionately.
59
+ The woman is wearing a colorful, patterned dress with a green lanyard featuring multiple badges and logos hanging around her neck. The lanyard prominently displays the "CagliostroLab" text.
60
+ Behind her, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene captures the energy and vibrancy of her presentation."""
61
+ example_cfg_scale = 3.2
62
+ example_steps = 32
63
+ example_width = 1152
64
+ example_height = 896
65
+ example_seed = 3981632454
66
+ example_lora_scale = 0.85
67
+
68
+ def load_example():
69
+ # Load example image from file
70
+ example_image = Image.open(example_image_path)
71
+ return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image
72
+
73
+ with gr.Blocks() as app:
74
+ gr.Markdown("# Flux RealismLora Image Generator")
75
+ with gr.Row():
76
+ with gr.Column(scale=3):
77
+ prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5)
78
+ generate_button = gr.Button("Generate")
79
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
80
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
81
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
82
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
83
+ randomize_seed = gr.Checkbox(True, label="Randomize seed")
84
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
85
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
86
+ with gr.Column(scale=1):
87
+ result = gr.Image(label="Generated Image")
88
+ gr.Markdown("Generate images using RealismLora and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]")
89
+
90
+ # Automatically load example data and image when the interface is launched
91
+ app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result])
92
+
93
+ generate_button.click(
94
+ run_lora,
95
+ inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
96
+ outputs=[result, seed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  )
98
 
99
+ app.queue()
100
+ app.launch()