Spaces:
Running
Running
Add the files
Browse files- app.py +17 -0
- requirements.txt +4 -0
- train.py +47 -0
app.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Carregar o modelo diretamente do Hugging Face Hub
|
5 |
+
classifier = pipeline("image-classification", model="mestrevh/computer-vision-cifar-10")
|
6 |
+
|
7 |
+
# Função de classificação
|
8 |
+
def predict_image(image):
|
9 |
+
return classifier(image)
|
10 |
+
|
11 |
+
# Interface Gradio
|
12 |
+
interface = gr.Interface(fn=predict_image,
|
13 |
+
inputs=gr.inputs.Image(type="pil"),
|
14 |
+
outputs="label",
|
15 |
+
live=True)
|
16 |
+
|
17 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.29.0
|
2 |
+
datasets==2.10.0
|
3 |
+
torch==2.1.0
|
4 |
+
gradio==3.33.0
|
train.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
4 |
+
|
5 |
+
# Carregar o dataset "beans"
|
6 |
+
dataset = load_dataset("beans")
|
7 |
+
|
8 |
+
# Carregar o modelo pré-treinado e definir o número de classes corretamente (3 classes para Beans)
|
9 |
+
model = ViTForImageClassification.from_pretrained(
|
10 |
+
"google/vit-base-patch16-224-in21k",
|
11 |
+
num_labels=3 # Beans tem 3 classes
|
12 |
+
)
|
13 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
|
14 |
+
|
15 |
+
# Preprocessamento
|
16 |
+
def preprocess_function(examples):
|
17 |
+
inputs = feature_extractor(examples["image"], return_tensors="pt") # A chave correta no Beans é "image"
|
18 |
+
inputs["labels"] = examples["labels"] # Certifique-se de que o rótulo está correto
|
19 |
+
return inputs
|
20 |
+
|
21 |
+
# Aplicando o preprocessamento ao dataset
|
22 |
+
dataset = dataset.map(preprocess_function, batched=True)
|
23 |
+
|
24 |
+
# Definir os parâmetros de treinamento
|
25 |
+
training_args = TrainingArguments(
|
26 |
+
output_dir="./results",
|
27 |
+
evaluation_strategy="epoch",
|
28 |
+
learning_rate=2e-5,
|
29 |
+
per_device_train_batch_size=16,
|
30 |
+
per_device_eval_batch_size=64,
|
31 |
+
num_train_epochs=3,
|
32 |
+
weight_decay=0.01,
|
33 |
+
)
|
34 |
+
|
35 |
+
trainer = Trainer(
|
36 |
+
model=model,
|
37 |
+
args=training_args,
|
38 |
+
train_dataset=dataset["train"],
|
39 |
+
eval_dataset=dataset["validation"], # No Beans, o conjunto de teste é chamado de "validation"
|
40 |
+
)
|
41 |
+
|
42 |
+
# Treinar o modelo
|
43 |
+
trainer.train()
|
44 |
+
|
45 |
+
# Salvar o modelo e o feature extractor treinados
|
46 |
+
model.save_pretrained("./computer-vision-beans")
|
47 |
+
feature_extractor.save_pretrained("./computer-vision-beans")
|