mestrevh commited on
Commit
c5e676e
·
1 Parent(s): e6bd21c

modified the app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -6
app.py CHANGED
@@ -1,19 +1,25 @@
1
  import gradio as gr
2
- from transformers import AutoModelForImageClassification, AutoFeatureExtractor, pipeline
3
 
 
4
  model = AutoModelForImageClassification.from_pretrained("mestrevh/computer-vision-beans", use_safetensors=True)
5
- feature_extractor = AutoFeatureExtractor.from_pretrained("mestrevh/computer-vision-beans")
6
 
7
- classifier = pipeline("image-classification", model=model, feature_extractor=feature_extractor)
 
8
 
9
  # Função de classificação
10
  def predict_image(image):
11
- return classifier(image)
 
 
 
 
12
 
13
  # Interface Gradio
14
  interface = gr.Interface(fn=predict_image,
15
- inputs = gr.Image(type="pil"),
16
- outputs="label",
17
  live=True)
18
 
19
  interface.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForImageClassification, AutoImageProcessor, pipeline
3
 
4
+ # Carregar o modelo e o processador de imagens
5
  model = AutoModelForImageClassification.from_pretrained("mestrevh/computer-vision-beans", use_safetensors=True)
6
+ image_processor = AutoImageProcessor.from_pretrained("mestrevh/computer-vision-beans")
7
 
8
+ # Criar o pipeline
9
+ classifier = pipeline("image-classification", model=model, feature_extractor=image_processor)
10
 
11
  # Função de classificação
12
  def predict_image(image):
13
+ # A saída do classifier é uma lista de dicionários, pegar o label e a confiança
14
+ result = classifier(image)
15
+ label = result[0]['label']
16
+ confidence = result[0]['score']
17
+ return f"Class: {label}, Confidence: {confidence:.2f}"
18
 
19
  # Interface Gradio
20
  interface = gr.Interface(fn=predict_image,
21
+ inputs=gr.Image(type="pil"),
22
+ outputs="text",
23
  live=True)
24
 
25
  interface.launch()