merve HF Staff commited on
Commit
158c444
·
1 Parent(s): 24373d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -2
app.py CHANGED
@@ -12,24 +12,37 @@ df.drop(columns=["id"], inplace=True)
12
  def plot(df):
13
  plots = []
14
  plt.scatter(df.measurement_13, df.measurement_15, c = df.failure, alpha=0.5)
 
 
 
15
  plt.savefig("scatter.png")
16
  plt.scatter(df.measurement_10, df.measurement_15, c = df.failure, alpha=0.5)
 
17
  plt.savefig("scatter_2.png")
18
  plt.scatter(df.measurement_14, df.measurement_15, c = df.failure, alpha=0.5)
 
19
  plt.savefig("scatter_3.png")
20
  plt.scatter(df.measurement_16, df.measurement_15, c = df.failure, alpha=0.5)
 
21
  plt.savefig("scatter_4.png")
22
  df['failure'].value_counts().plot(kind='bar')
 
23
  plt.savefig("bar.png")
24
  sns.distplot(df["loading"])
 
25
  plt.savefig("loading_dist.png")
26
  sns.distplot(df["attribute_3"])
 
27
  plt.savefig("attribute_3.png")
28
  sns.catplot(x='measurement_3', y='measurement_4', hue='failure', data=df, kind='violin')
29
- plt.savefig("swarmplot.png")
 
 
 
30
  sns.heatmap(df.select_dtypes(include="number").corr())
 
31
  plt.savefig("corr.png")
32
- plots = ["corr.png","scatter.png", "scatter_2.png", "scatter_3.png", "scatter_4.png", "bar.png", "loading_dist.png", "attribute_3.png", "swarmplot.png"]
33
  return plots
34
 
35
  inputs = [gr.Dataframe(label="Supersoaker Production Data")]
 
12
  def plot(df):
13
  plots = []
14
  plt.scatter(df.measurement_13, df.measurement_15, c = df.failure, alpha=0.5)
15
+ plt.title("Measurement 13 vs 15 with Failure")
16
+ plt.xlabel("Measurement 13")
17
+ plt.ylabel("Measurement 15")
18
  plt.savefig("scatter.png")
19
  plt.scatter(df.measurement_10, df.measurement_15, c = df.failure, alpha=0.5)
20
+ plt.title("Measurement 10 vs 15 with Failure")
21
  plt.savefig("scatter_2.png")
22
  plt.scatter(df.measurement_14, df.measurement_15, c = df.failure, alpha=0.5)
23
+ plt.title("Measurement 13 vs 15 with Failure")
24
  plt.savefig("scatter_3.png")
25
  plt.scatter(df.measurement_16, df.measurement_15, c = df.failure, alpha=0.5)
26
+ plt.title("Measurement 16 vs 15 with Failure")
27
  plt.savefig("scatter_4.png")
28
  df['failure'].value_counts().plot(kind='bar')
29
+ plt.title("Number of failed vs successful products")
30
  plt.savefig("bar.png")
31
  sns.distplot(df["loading"])
32
+ plt.title("Distribution of Loading Variable")
33
  plt.savefig("loading_dist.png")
34
  sns.distplot(df["attribute_3"])
35
+ plt.title("Distribution of Attribute 3")
36
  plt.savefig("attribute_3.png")
37
  sns.catplot(x='measurement_3', y='measurement_4', hue='failure', data=df, kind='violin')
38
+ plt.title("Violin Plot of Measurement 3 vs Measurement 4 with Failures")
39
+ plt.xlabel("Measurement 3")
40
+ plt.ylabel("Measurement 4")
41
+ plt.savefig("violinplot.png")
42
  sns.heatmap(df.select_dtypes(include="number").corr())
43
+ plt.title("Correlation Between Numerical Variables")
44
  plt.savefig("corr.png")
45
+ plots = ["corr.png","scatter.png", "scatter_2.png", "scatter_3.png", "scatter_4.png", "bar.png", "loading_dist.png", "attribute_3.png", "violinplot.png"]
46
  return plots
47
 
48
  inputs = [gr.Dataframe(label="Supersoaker Production Data")]