Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,24 +12,37 @@ df.drop(columns=["id"], inplace=True)
|
|
12 |
def plot(df):
|
13 |
plots = []
|
14 |
plt.scatter(df.measurement_13, df.measurement_15, c = df.failure, alpha=0.5)
|
|
|
|
|
|
|
15 |
plt.savefig("scatter.png")
|
16 |
plt.scatter(df.measurement_10, df.measurement_15, c = df.failure, alpha=0.5)
|
|
|
17 |
plt.savefig("scatter_2.png")
|
18 |
plt.scatter(df.measurement_14, df.measurement_15, c = df.failure, alpha=0.5)
|
|
|
19 |
plt.savefig("scatter_3.png")
|
20 |
plt.scatter(df.measurement_16, df.measurement_15, c = df.failure, alpha=0.5)
|
|
|
21 |
plt.savefig("scatter_4.png")
|
22 |
df['failure'].value_counts().plot(kind='bar')
|
|
|
23 |
plt.savefig("bar.png")
|
24 |
sns.distplot(df["loading"])
|
|
|
25 |
plt.savefig("loading_dist.png")
|
26 |
sns.distplot(df["attribute_3"])
|
|
|
27 |
plt.savefig("attribute_3.png")
|
28 |
sns.catplot(x='measurement_3', y='measurement_4', hue='failure', data=df, kind='violin')
|
29 |
-
plt.
|
|
|
|
|
|
|
30 |
sns.heatmap(df.select_dtypes(include="number").corr())
|
|
|
31 |
plt.savefig("corr.png")
|
32 |
-
plots = ["corr.png","scatter.png", "scatter_2.png", "scatter_3.png", "scatter_4.png", "bar.png", "loading_dist.png", "attribute_3.png", "
|
33 |
return plots
|
34 |
|
35 |
inputs = [gr.Dataframe(label="Supersoaker Production Data")]
|
|
|
12 |
def plot(df):
|
13 |
plots = []
|
14 |
plt.scatter(df.measurement_13, df.measurement_15, c = df.failure, alpha=0.5)
|
15 |
+
plt.title("Measurement 13 vs 15 with Failure")
|
16 |
+
plt.xlabel("Measurement 13")
|
17 |
+
plt.ylabel("Measurement 15")
|
18 |
plt.savefig("scatter.png")
|
19 |
plt.scatter(df.measurement_10, df.measurement_15, c = df.failure, alpha=0.5)
|
20 |
+
plt.title("Measurement 10 vs 15 with Failure")
|
21 |
plt.savefig("scatter_2.png")
|
22 |
plt.scatter(df.measurement_14, df.measurement_15, c = df.failure, alpha=0.5)
|
23 |
+
plt.title("Measurement 13 vs 15 with Failure")
|
24 |
plt.savefig("scatter_3.png")
|
25 |
plt.scatter(df.measurement_16, df.measurement_15, c = df.failure, alpha=0.5)
|
26 |
+
plt.title("Measurement 16 vs 15 with Failure")
|
27 |
plt.savefig("scatter_4.png")
|
28 |
df['failure'].value_counts().plot(kind='bar')
|
29 |
+
plt.title("Number of failed vs successful products")
|
30 |
plt.savefig("bar.png")
|
31 |
sns.distplot(df["loading"])
|
32 |
+
plt.title("Distribution of Loading Variable")
|
33 |
plt.savefig("loading_dist.png")
|
34 |
sns.distplot(df["attribute_3"])
|
35 |
+
plt.title("Distribution of Attribute 3")
|
36 |
plt.savefig("attribute_3.png")
|
37 |
sns.catplot(x='measurement_3', y='measurement_4', hue='failure', data=df, kind='violin')
|
38 |
+
plt.title("Violin Plot of Measurement 3 vs Measurement 4 with Failures")
|
39 |
+
plt.xlabel("Measurement 3")
|
40 |
+
plt.ylabel("Measurement 4")
|
41 |
+
plt.savefig("violinplot.png")
|
42 |
sns.heatmap(df.select_dtypes(include="number").corr())
|
43 |
+
plt.title("Correlation Between Numerical Variables")
|
44 |
plt.savefig("corr.png")
|
45 |
+
plots = ["corr.png","scatter.png", "scatter_2.png", "scatter_3.png", "scatter_4.png", "bar.png", "loading_dist.png", "attribute_3.png", "violinplot.png"]
|
46 |
return plots
|
47 |
|
48 |
inputs = [gr.Dataframe(label="Supersoaker Production Data")]
|