import gradio as gr from huggingface_hub import InferenceClient from datasets import load_dataset # Import the datasets library """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Load the dataset from Hugging Face dataset = load_dataset("samhog/psychology-RLAIF", split="train") # Load the training split # Inspect the dataset structure print("Dataset Columns:", dataset.column_names) print("Sample Data:", dataset[0]) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Attempt to find a response in the dataset try: closest_match = None for entry in dataset: if message.lower() in entry["question"].lower(): # Adjust based on actual column names closest_match = entry["answer"] # Adjust based on actual column names break # If a match is found, return the dataset answer if closest_match: return closest_match except Exception as e: # Log errors during dataset querying print(f"Dataset Query Error: {e}") # If no match is found, or there's an error, fall back to chatbot model messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ # Use the custom theme by setting the `theme` parameter as a string demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], theme="allenai/gradio-theme" # Apply the custom theme ) if __name__ == "__main__": demo.launch()