Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from rembg import remove
|
7 |
+
from realesrgan import RealESRGAN
|
8 |
+
from moviepy.editor import ImageSequenceClip
|
9 |
+
|
10 |
+
# Upload section
|
11 |
+
st.title("🖼️ AI Image & Video Effects Studio")
|
12 |
+
st.markdown("Upload multiple images, apply cool effects, and export a video!")
|
13 |
+
|
14 |
+
uploaded_files = st.file_uploader("Upload images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
15 |
+
|
16 |
+
# Select effect
|
17 |
+
effect = st.selectbox("Choose an effect to apply", ["None", "Cartoon", "Edge Detection", "Remove Background", "Face Enhancement"])
|
18 |
+
|
19 |
+
output_dir = "outputs"
|
20 |
+
os.makedirs(output_dir, exist_ok=True)
|
21 |
+
|
22 |
+
processed_images = []
|
23 |
+
|
24 |
+
def cartoonize(image):
|
25 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
26 |
+
gray = cv2.medianBlur(gray, 5)
|
27 |
+
edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
|
28 |
+
cv2.THRESH_BINARY, 9, 9)
|
29 |
+
color = cv2.bilateralFilter(image, 9, 300, 300)
|
30 |
+
cartoon = cv2.bitwise_and(color, color, mask=edges)
|
31 |
+
return cartoon
|
32 |
+
|
33 |
+
def edge_detect(image):
|
34 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
35 |
+
edges = cv2.Canny(gray, 100, 200)
|
36 |
+
return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
|
37 |
+
|
38 |
+
def enhance_face(image_pil):
|
39 |
+
from realesrgan import RealESRGAN
|
40 |
+
model = RealESRGAN("cpu", scale=2)
|
41 |
+
model.load_weights("RealESRGAN_x2.pth")
|
42 |
+
return model.predict(image_pil)
|
43 |
+
|
44 |
+
def save_video(images, filename="output_video.mp4"):
|
45 |
+
clip = ImageSequenceClip(images, fps=1)
|
46 |
+
clip.write_videofile(filename, codec="libx264")
|
47 |
+
return filename
|
48 |
+
|
49 |
+
if uploaded_files:
|
50 |
+
for file in uploaded_files:
|
51 |
+
img = Image.open(file).convert("RGB")
|
52 |
+
np_img = np.array(img)
|
53 |
+
np_img_bgr = cv2.cvtColor(np_img, cv2.COLOR_RGB2BGR)
|
54 |
+
|
55 |
+
if effect == "Cartoon":
|
56 |
+
result = cartoonize(np_img_bgr)
|
57 |
+
elif effect == "Edge Detection":
|
58 |
+
result = edge_detect(np_img_bgr)
|
59 |
+
elif effect == "Remove Background":
|
60 |
+
result = remove(np_img)
|
61 |
+
elif effect == "Face Enhancement":
|
62 |
+
result = enhance_face(img)
|
63 |
+
else:
|
64 |
+
result = np_img_bgr
|
65 |
+
|
66 |
+
result_rgb = cv2.cvtColor(result, cv2.COLOR_BGR2RGB) if isinstance(result, np.ndarray) else result
|
67 |
+
final_img = Image.fromarray(result_rgb)
|
68 |
+
|
69 |
+
st.image(final_img, caption="Processed Image", use_column_width=True)
|
70 |
+
|
71 |
+
img_path = os.path.join(output_dir, f"{file.name}")
|
72 |
+
final_img.save(img_path)
|
73 |
+
processed_images.append(img_path)
|
74 |
+
|
75 |
+
# Convert to video
|
76 |
+
if st.button("🎞️ Convert to Video Slideshow"):
|
77 |
+
video_path = save_video(processed_images)
|
78 |
+
st.video(video_path)
|
79 |
+
|
80 |
+
# Download
|
81 |
+
for img_path in processed_images:
|
82 |
+
with open(img_path, "rb") as f:
|
83 |
+
st.download_button("Download Image", f, file_name=os.path.basename(img_path))
|
84 |
+
|