File size: 2,779 Bytes
582aa2c
 
7d58c40
b698950
91c303a
 
 
 
fa34db2
b698950
91c303a
7d58c40
91c303a
 
7632fc7
91c303a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7632fc7
7d58c40
91c303a
 
 
7632fc7
91c303a
7632fc7
91c303a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abad73f
7d58c40
91c303a
 
7d58c40
 
91c303a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import streamlit as st
from diffusers import StableDiffusionPipeline
import torch
from PIL import Image
import tempfile
import whisper
import os
from realesrgan import RealESRGAN
from huggingface_hub import hf_hub_download

# Load Whisper for voice-to-text
@st.cache_resource
def load_whisper():
    return whisper.load_model("base")

# Load Stable Diffusion models
@st.cache_resource
def load_pipelines():
    pipelines = {
        "Realistic": StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float32),
        "Anime": StableDiffusionPipeline.from_pretrained("andite/anything-v4.0", torch_dtype=torch.float32),
        "Ghibli": StableDiffusionPipeline.from_pretrained("nitrosocke/Ghibli-Diffusion", torch_dtype=torch.float32)
    }
    for key in pipelines:
        pipelines[key] = pipelines[key].to("cpu")
    return pipelines

# Load Real-ESRGAN for enhancement
@st.cache_resource
def load_enhancer():
    from basicsr.archs.rrdbnet_arch import RRDBNet
    model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
                    num_block=23, num_grow_ch=32, scale=4)
    return RealESRGAN(device=torch.device("cpu"), scale=4).load_weights(model)

whisper_model = load_whisper()
pipes = load_pipelines()
enhancer = load_enhancer()

st.set_page_config(page_title="Love Text to Image", layout="centered")
st.title("πŸ’– Love Text to Image Generator")

st.markdown("Write or speak a romantic poem and turn it into beautiful art ✨")

style = st.selectbox("Choose art style", ["Realistic", "Anime", "Ghibli"])

tab1, tab2 = st.tabs(["πŸ“ Text Input", "🎀 Voice Input"])

prompt = ""

with tab1:
    prompt = st.text_area("Enter your romantic poem or message")

with tab2:
    audio_file = st.file_uploader("Upload your audio file (mp3, wav)", type=["mp3", "wav"])
    if audio_file is not None:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
            tmp.write(audio_file.read())
            tmp_path = tmp.name
        with st.spinner("Transcribing..."):
            result = whisper_model.transcribe(tmp_path)
            prompt = result["text"]
            st.success("Transcription Complete!")
            st.markdown(f"**Transcribed Text:** {prompt}")
        os.remove(tmp_path)

if st.button("Generate Image"):
    if prompt.strip() == "":
        st.warning("Please enter or upload a love message.")
    else:
        with st.spinner("Generating image..."):
            image = pipes[style](prompt).images[0]
            st.image(image, caption="Original Generated Image", use_column_width=True)

            with st.spinner("Enhancing image..."):
                enhanced = enhancer.predict(image)
                st.image(enhanced, caption="Enhanced Image", use_column_width=True)