Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,112 +5,113 @@ from torchvision import models
|
|
5 |
from PIL import Image
|
6 |
import numpy as np
|
7 |
import cv2
|
8 |
-
import tempfile
|
9 |
-
import pyttsx3
|
10 |
-
import os
|
11 |
from datetime import datetime
|
12 |
-
import
|
13 |
-
from torchvision.models.mobilenetv2 import MobileNetV2
|
14 |
from gtts import gTTS
|
15 |
import os
|
16 |
|
17 |
-
#
|
18 |
os.makedirs("history", exist_ok=True)
|
19 |
-
|
20 |
-
# ========== TTS ENGINE ==========
|
21 |
-
|
22 |
-
def speak_streamlit(text):
|
23 |
-
tts = gTTS(text=text, lang='en')
|
24 |
-
tts.save("temp.mp3")
|
25 |
-
st.audio("temp.mp3", format="audio/mp3")
|
26 |
-
|
27 |
-
|
28 |
-
# ========== CURRENCY TYPE ==========
|
29 |
-
currency_type = st.selectbox("Select currency type:", ["PKR (Pakistani Rupees)", "USD (US Dollars)", "INR (Indian Rupees)"])
|
30 |
-
|
31 |
-
# For now, only PKR model is supported
|
32 |
-
if "PKR" not in currency_type:
|
33 |
-
st.warning("Currently only Pakistani Rupees (PKR) is supported. Other currencies coming soon!")
|
34 |
-
st.stop()
|
35 |
-
|
36 |
-
# ========== LOAD MODEL ==========
|
37 |
-
|
38 |
torch.serialization.add_safe_globals({'MobileNetV2': MobileNetV2})
|
39 |
|
|
|
40 |
model = torch.load("pkr_currency_classifier.pt", map_location='cpu', weights_only=False)
|
41 |
model.eval()
|
|
|
42 |
|
43 |
-
|
44 |
-
# ========== TRANSFORMS ==========
|
45 |
transform = transforms.Compose([
|
46 |
transforms.Resize((224, 224)),
|
47 |
transforms.ToTensor()
|
48 |
])
|
49 |
|
50 |
-
#
|
51 |
-
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
#
|
62 |
def save_history(image, result):
|
63 |
-
os.makedirs("history", exist_ok=True)
|
64 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
65 |
image.save(f"history/{timestamp}_{result}.png")
|
66 |
|
67 |
-
#
|
|
|
68 |
st.title("💵 Currency Authenticity Detector")
|
69 |
st.subheader("Check if your currency is real or fake!")
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
option = st.radio("Choose method:", ["Upload Image", "Scan via Camera"])
|
72 |
|
|
|
73 |
if option == "Upload Image":
|
74 |
uploaded_file = st.file_uploader("Upload a currency image", type=["jpg", "jpeg", "png"])
|
75 |
if uploaded_file:
|
76 |
image = Image.open(uploaded_file).convert("RGB")
|
77 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
78 |
prediction = predict(image)
|
79 |
-
st.success(f"Prediction: **{prediction}**")
|
80 |
-
speak_streamlit(f"This is a {prediction}")
|
81 |
-
save_history(image, prediction)
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
elif option == "Scan via Camera":
|
84 |
-
st.write("Hold currency in front of your webcam and press
|
85 |
if st.button("Start Camera"):
|
86 |
cap = cv2.VideoCapture(0)
|
87 |
stframe = st.empty()
|
88 |
result_box = st.empty()
|
89 |
-
stop = st.button("Stop Camera")
|
90 |
|
91 |
-
|
|
|
|
|
92 |
ret, frame = cap.read()
|
93 |
if not ret:
|
94 |
break
|
95 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
96 |
pil_image = Image.fromarray(frame_rgb)
|
97 |
-
|
98 |
-
# Show frame
|
99 |
stframe.image(pil_image, channels="RGB", use_column_width=True)
|
100 |
|
101 |
-
# Predict
|
102 |
prediction = predict(pil_image)
|
103 |
result_box.markdown(f"### Prediction: **{prediction}**")
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
cap.release()
|
108 |
stframe.empty()
|
109 |
result_box.empty()
|
110 |
|
111 |
-
#
|
112 |
if st.checkbox("📁 Show Scan History"):
|
113 |
st.write("Previously scanned images:")
|
114 |
for img_file in sorted(os.listdir("history"))[::-1][:5]:
|
115 |
-
st.image(f"history/{img_file}", caption=img_file)
|
116 |
-
|
|
|
|
|
|
5 |
from PIL import Image
|
6 |
import numpy as np
|
7 |
import cv2
|
|
|
|
|
|
|
8 |
from datetime import datetime
|
9 |
+
from torchvision.models.mobilenetv2 import MobileNetV2
|
|
|
10 |
from gtts import gTTS
|
11 |
import os
|
12 |
|
13 |
+
# ====== Setup ======
|
14 |
os.makedirs("history", exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
torch.serialization.add_safe_globals({'MobileNetV2': MobileNetV2})
|
16 |
|
17 |
+
# Load model
|
18 |
model = torch.load("pkr_currency_classifier.pt", map_location='cpu', weights_only=False)
|
19 |
model.eval()
|
20 |
+
class_names = ['Fake', 'Not Currency', 'Real']
|
21 |
|
22 |
+
# Transforms
|
|
|
23 |
transform = transforms.Compose([
|
24 |
transforms.Resize((224, 224)),
|
25 |
transforms.ToTensor()
|
26 |
])
|
27 |
|
28 |
+
# Text-to-speech
|
29 |
+
def speak_streamlit(text):
|
30 |
+
tts = gTTS(text=text, lang='en')
|
31 |
+
tts.save("temp.mp3")
|
32 |
+
st.audio("temp.mp3", format="audio/mp3")
|
33 |
|
34 |
+
# Prediction function
|
35 |
+
def predict(image):
|
36 |
+
img = transform(image).unsqueeze(0)
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = model(img)
|
39 |
+
_, predicted = torch.max(outputs, 1)
|
40 |
+
return class_names[predicted.item()]
|
41 |
|
42 |
+
# Save history
|
43 |
def save_history(image, result):
|
|
|
44 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
45 |
image.save(f"history/{timestamp}_{result}.png")
|
46 |
|
47 |
+
# ====== UI ======
|
48 |
+
st.set_page_config(page_title="Currency Detector", page_icon="💵")
|
49 |
st.title("💵 Currency Authenticity Detector")
|
50 |
st.subheader("Check if your currency is real or fake!")
|
51 |
|
52 |
+
currency_type = st.selectbox("Select currency type:", ["PKR (Pakistani Rupees)", "USD (US Dollars)", "INR (Indian Rupees)"])
|
53 |
+
if "PKR" not in currency_type:
|
54 |
+
st.warning("Currently only Pakistani Rupees (PKR) is supported. Other currencies coming soon!")
|
55 |
+
st.stop()
|
56 |
+
|
57 |
+
# Choose input method
|
58 |
option = st.radio("Choose method:", ["Upload Image", "Scan via Camera"])
|
59 |
|
60 |
+
# ===== Upload Mode =====
|
61 |
if option == "Upload Image":
|
62 |
uploaded_file = st.file_uploader("Upload a currency image", type=["jpg", "jpeg", "png"])
|
63 |
if uploaded_file:
|
64 |
image = Image.open(uploaded_file).convert("RGB")
|
65 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
66 |
prediction = predict(image)
|
|
|
|
|
|
|
67 |
|
68 |
+
if prediction == "Not Currency":
|
69 |
+
st.warning("⚠️ This image does not appear to be a currency note.")
|
70 |
+
speak_streamlit("This is not a currency note.")
|
71 |
+
else:
|
72 |
+
st.success(f"Prediction: **{prediction}**")
|
73 |
+
speak_streamlit(f"This is a {prediction} currency note.")
|
74 |
+
save_history(image, prediction)
|
75 |
+
|
76 |
+
# ===== Camera Mode =====
|
77 |
elif option == "Scan via Camera":
|
78 |
+
st.write("Hold the currency in front of your webcam and press Start.")
|
79 |
if st.button("Start Camera"):
|
80 |
cap = cv2.VideoCapture(0)
|
81 |
stframe = st.empty()
|
82 |
result_box = st.empty()
|
|
|
83 |
|
84 |
+
stop_button = st.button("Stop Camera")
|
85 |
+
|
86 |
+
while cap.isOpened():
|
87 |
ret, frame = cap.read()
|
88 |
if not ret:
|
89 |
break
|
90 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
91 |
pil_image = Image.fromarray(frame_rgb)
|
|
|
|
|
92 |
stframe.image(pil_image, channels="RGB", use_column_width=True)
|
93 |
|
|
|
94 |
prediction = predict(pil_image)
|
95 |
result_box.markdown(f"### Prediction: **{prediction}**")
|
96 |
+
|
97 |
+
if prediction != "Not Currency":
|
98 |
+
speak_streamlit(f"This is a {prediction} currency note.")
|
99 |
+
save_history(pil_image, prediction)
|
100 |
+
else:
|
101 |
+
speak_streamlit("This is not a currency note.")
|
102 |
+
|
103 |
+
if stop_button:
|
104 |
+
break
|
105 |
|
106 |
cap.release()
|
107 |
stframe.empty()
|
108 |
result_box.empty()
|
109 |
|
110 |
+
# ===== History =====
|
111 |
if st.checkbox("📁 Show Scan History"):
|
112 |
st.write("Previously scanned images:")
|
113 |
for img_file in sorted(os.listdir("history"))[::-1][:5]:
|
114 |
+
st.image(f"history/{img_file}", caption=img_file, width=200)
|
115 |
+
|
116 |
+
st.markdown("---")
|
117 |
+
st.markdown("👨💻 Designed by MERAJ GRAPHICS")
|