Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import clip
|
5 |
+
from PIL import Image
|
6 |
+
from moviepy.editor import *
|
7 |
+
from transformers import pipeline
|
8 |
+
from langdetect import detect
|
9 |
+
from gtts import gTTS
|
10 |
+
import tempfile
|
11 |
+
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
clip_model, preprocess = clip.load("ViT-B/32", device=device)
|
14 |
+
whisper_model = whisper.load_model("small")
|
15 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
|
16 |
+
|
17 |
+
def transcribe_audio_segments(audio_path):
|
18 |
+
result = whisper_model.transcribe(audio_path, word_timestamps=True)
|
19 |
+
segments = result["segments"]
|
20 |
+
return segments
|
21 |
+
|
22 |
+
def translate_text(text, target_lang="en"):
|
23 |
+
detected = detect(text)
|
24 |
+
if detected != target_lang:
|
25 |
+
translated = translator(text)[0]['translation_text']
|
26 |
+
return translated
|
27 |
+
return text
|
28 |
+
|
29 |
+
def match_images(text, image_paths):
|
30 |
+
text = clip.tokenize([text]).to(device)
|
31 |
+
images = [preprocess(Image.open(img_path)).unsqueeze(0).to(device) for img_path in image_paths]
|
32 |
+
images_tensor = torch.cat(images)
|
33 |
+
with torch.no_grad():
|
34 |
+
text_features = clip_model.encode_text(text)
|
35 |
+
image_features = clip_model.encode_image(images_tensor)
|
36 |
+
similarity = (image_features @ text_features.T).squeeze()
|
37 |
+
best_index = similarity.argmax().item()
|
38 |
+
return image_paths[best_index]
|
39 |
+
|
40 |
+
def generate_speech(text, lang="en"):
|
41 |
+
tts = gTTS(text, lang=lang)
|
42 |
+
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
43 |
+
tts.save(temp_audio.name)
|
44 |
+
return temp_audio.name
|
45 |
+
|
46 |
+
def create_video_segments(segments, audio_path, image_paths, output_path="final_video.mp4"):
|
47 |
+
clips = []
|
48 |
+
for seg in segments:
|
49 |
+
segment_text = seg['text'].strip()
|
50 |
+
translated = translate_text(segment_text)
|
51 |
+
duration = seg['end'] - seg['start']
|
52 |
+
matched_img = match_images(translated, image_paths)
|
53 |
+
image_clip = ImageClip(matched_img).set_duration(duration)
|
54 |
+
|
55 |
+
txt_clip = TextClip(translated, fontsize=30, color='white', bg_color='black', size=image_clip.size)
|
56 |
+
txt_clip = txt_clip.set_duration(duration).set_position(("center", "bottom"))
|
57 |
+
|
58 |
+
audio = AudioFileClip(audio_path).subclip(seg['start'], seg['end'])
|
59 |
+
final_clip = CompositeVideoClip([image_clip, txt_clip])
|
60 |
+
final_clip = final_clip.set_audio(audio)
|
61 |
+
clips.append(final_clip)
|
62 |
+
|
63 |
+
final_video = concatenate_videoclips(clips, method="compose")
|
64 |
+
final_video.write_videofile(output_path, fps=24)
|
65 |
+
return output_path
|