meraj12 commited on
Commit
9734ae0
·
verified ·
1 Parent(s): 9b07f04

Upload 2 files

Browse files
Files changed (2) hide show
  1. animegan2/__init__.py +0 -0
  2. animegan2/model.py +52 -0
animegan2/__init__.py ADDED
File without changes
animegan2/model.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch.nn as nn
3
+
4
+ class ConvLayer(nn.Module):
5
+ def __init__(self, in_channels, out_channels, kernel_size, stride):
6
+ super(ConvLayer, self).__init__()
7
+ reflection_padding = kernel_size // 2
8
+ self.layer = nn.Sequential(
9
+ nn.ReflectionPad2d(reflection_padding),
10
+ nn.Conv2d(in_channels, out_channels, kernel_size, stride),
11
+ nn.InstanceNorm2d(out_channels, affine=True),
12
+ nn.ReLU()
13
+ )
14
+
15
+ def forward(self, x):
16
+ return self.layer(x)
17
+
18
+ class ResidualBlock(nn.Module):
19
+ def __init__(self, channels):
20
+ super(ResidualBlock, self).__init__()
21
+ self.block = nn.Sequential(
22
+ ConvLayer(channels, channels, 3, 1),
23
+ ConvLayer(channels, channels, 3, 1)
24
+ )
25
+
26
+ def forward(self, x):
27
+ return x + self.block(x)
28
+
29
+ class Generator(nn.Module):
30
+ def __init__(self):
31
+ super(Generator, self).__init__()
32
+ self.encoder = nn.Sequential(
33
+ ConvLayer(3, 32, 7, 1),
34
+ ConvLayer(32, 64, 3, 2),
35
+ ConvLayer(64, 128, 3, 2),
36
+ )
37
+ self.res_blocks = nn.Sequential(*[ResidualBlock(128) for _ in range(5)])
38
+ self.decoder = nn.Sequential(
39
+ nn.Upsample(scale_factor=2),
40
+ ConvLayer(128, 64, 3, 1),
41
+ nn.Upsample(scale_factor=2),
42
+ ConvLayer(64, 32, 3, 1),
43
+ nn.ReflectionPad2d(3),
44
+ nn.Conv2d(32, 3, 7, 1),
45
+ nn.Tanh()
46
+ )
47
+
48
+ def forward(self, x):
49
+ x = self.encoder(x)
50
+ x = self.res_blocks(x)
51
+ x = self.decoder(x)
52
+ return x