Delete app.py
Browse files
app.py
DELETED
@@ -1,100 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from PIL import Image
|
3 |
-
import torch
|
4 |
-
from torchvision import transforms
|
5 |
-
import os
|
6 |
-
import torchvision.transforms.functional as TF
|
7 |
-
|
8 |
-
|
9 |
-
st.set_page_config(page_title="Ghibli Style Converter", layout="centered")
|
10 |
-
|
11 |
-
@st.cache_resource
|
12 |
-
import torch.nn as nn
|
13 |
-
|
14 |
-
class ConvLayer(nn.Module):
|
15 |
-
def __init__(self, in_channels, out_channels, kernel_size, stride):
|
16 |
-
super(ConvLayer, self).__init__()
|
17 |
-
reflection_padding = kernel_size // 2
|
18 |
-
self.layer = nn.Sequential(
|
19 |
-
nn.ReflectionPad2d(reflection_padding),
|
20 |
-
nn.Conv2d(in_channels, out_channels, kernel_size, stride),
|
21 |
-
nn.InstanceNorm2d(out_channels, affine=True),
|
22 |
-
nn.ReLU()
|
23 |
-
)
|
24 |
-
|
25 |
-
def forward(self, x):
|
26 |
-
return self.layer(x)
|
27 |
-
|
28 |
-
class ResidualBlock(nn.Module):
|
29 |
-
def __init__(self, channels):
|
30 |
-
super(ResidualBlock, self).__init__()
|
31 |
-
self.block = nn.Sequential(
|
32 |
-
ConvLayer(channels, channels, 3, 1),
|
33 |
-
ConvLayer(channels, channels, 3, 1)
|
34 |
-
)
|
35 |
-
|
36 |
-
def forward(self, x):
|
37 |
-
return x + self.block(x)
|
38 |
-
|
39 |
-
class Generator(nn.Module):
|
40 |
-
def __init__(self):
|
41 |
-
super(Generator, self).__init__()
|
42 |
-
self.encoder = nn.Sequential(
|
43 |
-
ConvLayer(3, 32, 7, 1),
|
44 |
-
ConvLayer(32, 64, 3, 2),
|
45 |
-
ConvLayer(64, 128, 3, 2),
|
46 |
-
)
|
47 |
-
self.res_blocks = nn.Sequential(*[ResidualBlock(128) for _ in range(5)])
|
48 |
-
self.decoder = nn.Sequential(
|
49 |
-
nn.Upsample(scale_factor=2),
|
50 |
-
ConvLayer(128, 64, 3, 1),
|
51 |
-
nn.Upsample(scale_factor=2),
|
52 |
-
ConvLayer(64, 32, 3, 1),
|
53 |
-
nn.ReflectionPad2d(3),
|
54 |
-
nn.Conv2d(32, 3, 7, 1),
|
55 |
-
nn.Tanh()
|
56 |
-
)
|
57 |
-
|
58 |
-
def forward(self, x):
|
59 |
-
x = self.encoder(x)
|
60 |
-
x = self.res_blocks(x)
|
61 |
-
x = self.decoder(x)
|
62 |
-
return x
|
63 |
-
|
64 |
-
def load_model():
|
65 |
-
model = Generator()
|
66 |
-
model.load_state_dict(torch.load("model/miyazaki_hayao.pth", map_location="cpu"))
|
67 |
-
model.eval()
|
68 |
-
return model
|
69 |
-
|
70 |
-
def preprocess(image):
|
71 |
-
image = image.convert("RGB")
|
72 |
-
transform = transforms.Compose([
|
73 |
-
transforms.Resize((256, 256)),
|
74 |
-
transforms.ToTensor()
|
75 |
-
])
|
76 |
-
return transform(image).unsqueeze(0)
|
77 |
-
|
78 |
-
def postprocess(tensor):
|
79 |
-
tensor = tensor.squeeze().detach().cpu()
|
80 |
-
image = TF.to_pil_image(tensor.clamp(0, 1))
|
81 |
-
return image
|
82 |
-
|
83 |
-
st.title("🎨 Ghibli Style Image Converter")
|
84 |
-
st.markdown("Upload your image to see it transformed into a Studio Ghibli-style artwork using AnimeGAN2!")
|
85 |
-
|
86 |
-
uploaded_file = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"])
|
87 |
-
|
88 |
-
if uploaded_file:
|
89 |
-
image = Image.open(uploaded_file)
|
90 |
-
st.image(image, caption="Original Image", use_column_width=True)
|
91 |
-
|
92 |
-
with st.spinner("Converting to Ghibli Style..."):
|
93 |
-
model = load_model()
|
94 |
-
input_tensor = preprocess(image)
|
95 |
-
with torch.no_grad():
|
96 |
-
output_tensor = model(input_tensor)
|
97 |
-
output_image = postprocess(output_tensor)
|
98 |
-
|
99 |
-
st.image(output_image, caption="Ghibli Style Image", use_column_width=True)
|
100 |
-
st.success("Conversion complete!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|