File size: 4,040 Bytes
8797584 486bb07 8797584 28552b3 486bb07 8797584 486bb07 8797584 486bb07 8797584 486bb07 8797584 9c95680 8797584 486bb07 28552b3 486bb07 8797584 486bb07 8797584 486bb07 8797584 486bb07 ef77a2c 8797584 486bb07 8797584 486bb07 8797584 486bb07 e28f41a 486bb07 f4f4ef5 486bb07 28552b3 486bb07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import streamlit as st
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_huggingface import HuggingFacePipeline
from langchain.agents import create_react_agent, AgentExecutor, Tool
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
# Email configuration
SENDER_EMAIL = "[email protected]" # Replace with your email
SENDER_PASSWORD = "Achuta@86" # Replace with your email password
SMTP_SERVER = "smtp.gmail.com" # Replace with your SMTP server
SMTP_PORT = 587 # Replace with your SMTP port
# Set up the open-source LLM
@st.cache_resource
def load_model():
model_name = "google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
pipe = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
max_length=512
)
return HuggingFacePipeline(pipeline=pipe)
local_llm = load_model()
def send_email(to_email, subject, body):
try:
message = MIMEMultipart()
message["From"] = SENDER_EMAIL
message["To"] = to_email
message["Subject"] = subject
message.attach(MIMEText(body, "plain"))
with smtplib.SMTP(SMTP_SERVER, SMTP_PORT) as server:
server.starttls()
server.login(SENDER_EMAIL, SENDER_PASSWORD)
server.send_message(message)
return "Email sent successfully"
except Exception as e:
return f"Failed to send email: {str(e)}"
tools = [
Tool(
name="Send Email",
func=send_email,
description="Sends an email. Args: to_email, subject, body"
)
]
prompt = PromptTemplate.from_template(
"""You are a helpful assistant scheduling cybersecurity program meetings.
Your task is to collect the user's name, email, and preferred meeting date, then send a meeting invitation.
Use the following format:
Human: <user's input>
Assistant: <your response>
Human: <user's input>
Assistant: <your response>
...
Once you have all the information, use the Send Email tool to send the invitation.
The email should include this Zoom link: https://us04web.zoom.us/j/73793374638?pwd=S0TEJ30da7dhQ8viOdafMzPfCVzoLJ.1
And this Meeting ID: 737 9337 4638
Begin the conversation by asking for the user's name.
{chat_history}
Human: {input}
Assistant: Let's proceed step by step:
{agent_scratchpad}
Tools available:
{tools}
Tool names:
{tool_names}
"""
)
agent = create_react_agent(local_llm, tools, prompt)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True)
)
# Streamlit interface
st.title("CyberSecurity Program Meeting Scheduler")
st.write("Chat with the AI to schedule your meeting. The AI will ask for your name, email, and preferred meeting date.")
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Your message"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = agent_executor.run(prompt)
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
st.sidebar.title("About")
st.sidebar.info("This is an interactive CyberSecurity Program Meeting Scheduler. Chat with the AI to schedule your meeting. It will collect your information and send a meeting invitation via email.")
# To run this script, use: streamlit run your_script_name.py |