File size: 4,448 Bytes
8797584
 
 
 
 
 
 
486bb07
8797584
9086088
886d527
28552b3
486bb07
886d527
 
 
 
486bb07
8797584
 
886d527
8797584
 
886d527
8797584
 
 
 
486bb07
8797584
486bb07
 
 
 
 
 
 
 
 
 
8797584
 
 
886d527
9c95680
8797584
486bb07
886d527
 
 
 
8797584
486bb07
 
886d527
ef77a2c
8797584
 
486bb07
8797584
9086088
 
 
 
886d527
 
 
8797584
 
486bb07
 
 
 
 
e28f41a
486bb07
 
 
f4f4ef5
486bb07
 
 
 
 
 
 
9086088
886d527
 
9086088
 
 
 
 
 
 
 
 
886d527
 
9086088
 
28552b3
 
486bb07
 
ccd8578
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import streamlit as st
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_huggingface import HuggingFacePipeline
from langchain.agents import create_react_agent, AgentExecutor, Tool
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.schema import AgentAction, AgentFinish
import time

# Email configuration
SENDER_EMAIL = "[email protected]"
SENDER_PASSWORD = "Achuta@86"
SMTP_SERVER = "smtp.gmail.com"
SMTP_PORT = 587

@st.cache_resource
def load_model():
    model_name = "google/flan-t5-small"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=512)
    return HuggingFacePipeline(pipeline=pipe)

local_llm = load_model()

def send_email(to_email, subject, body):
    try:
        message = MIMEMultipart()
        message["From"] = SENDER_EMAIL
        message["To"] = to_email
        message["Subject"] = subject
        message.attach(MIMEText(body, "plain"))
        with smtplib.SMTP(SMTP_SERVER, SMTP_PORT) as server:
            server.starttls()
            server.login(SENDER_EMAIL, SENDER_PASSWORD)
            server.send_message(message)
        return "Email sent successfully"
    except Exception as e:
        return f"Failed to send email: {str(e)}"

tools = [Tool(name="Send Email", func=send_email, description="Sends an email. Args: to_email, subject, body")]

prompt = PromptTemplate.from_template(
    """You are a helpful assistant scheduling cybersecurity program meetings. 
    Collect the user's name, email, and preferred meeting date, then send a meeting invitation.
    Begin by asking for the user's name if you don't have it.
    Zoom link: https://us04web.zoom.us/j/73793374638?pwd=S0TEJ30da7dhQ8viOdafMzPfCVzoLJ.1
    Meeting ID: 737 9337 4638

    {chat_history}
    Human: {input}
    Assistant: {agent_scratchpad}
    """
)

agent = create_react_agent(local_llm, tools, prompt)
agent_executor = AgentExecutor.from_agent_and_tools(
    agent=agent, 
    tools=tools, 
    verbose=True, 
    memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True),
    handle_parsing_errors=True,
    max_iterations=3,  # Limit the number of iterations
    early_stopping_method="generate"  # Stop if the agent starts looping
)

st.title("CyberSecurity Program Meeting Scheduler")
st.write("Chat with the AI to schedule your meeting. The AI will ask for your name, email, and preferred meeting date.")

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if prompt := st.chat_input("Your message"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            try:
                start_time = time.time()
                response = agent_executor({"input": prompt}, timeout=10)  # 10-second timeout
                if isinstance(response, dict) and "output" in response:
                    assistant_response = response["output"]
                elif isinstance(response, (AgentAction, AgentFinish)):
                    assistant_response = response.return_values.get("output", str(response))
                else:
                    assistant_response = str(response)
                
                st.markdown(assistant_response)
                st.session_state.messages.append({"role": "assistant", "content": assistant_response})
            except TimeoutError:
                st.error("I apologize, but I'm having trouble processing your request at the moment. Could you please try asking your question again, or rephrase it?")
            except Exception as e:
                st.error(f"An error occurred: {str(e)}")

st.sidebar.title("About")
st.sidebar.info("This is an interactive CyberSecurity Program Meeting Scheduler. Chat with the AI to schedule your meeting. It will collect your information and send a meeting invitation via email.")

# To run this script, use: streamlit run your_script_name.py