File size: 3,299 Bytes
28552b3
 
5a1b2d8
b38937a
 
28552b3
b38937a
 
 
 
 
28552b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc28758
ecc0e05
 
28552b3
ecc0e05
28552b3
ecc0e05
28552b3
ecc0e05
28552b3
ecc0e05
 
 
 
 
 
 
e28f41a
ecc0e05
28552b3
ecc0e05
 
 
 
28552b3
dc28758
5ab8f67
93d7736
 
 
5ab8f67
 
e28f41a
28552b3
5ab8f67
 
 
93d7736
28552b3
 
 
 
 
747d33d
e28f41a
747d33d
 
 
f4f4ef5
747d33d
 
3fd5c94
747d33d
3fd5c94
28552b3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFacePipeline
from langchain.agents import create_react_agent, AgentExecutor, Tool
from langchain.memory import ConversationBufferMemory

# Mock lead data
LEADS = [
    {"name": "John Doe", "email": "[email protected]", "company": "TechCorp"},
]

# Set up the open-source LLM
@st.cache_resource
def load_model():
    model_name = "google/flan-t5-large"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    pipe = pipeline(
        "text2text-generation",
        model=model, 
        tokenizer=tokenizer, 
        max_length=512
    )
    return HuggingFacePipeline(pipeline=pipe)

local_llm = load_model()

# Define the tools for the agent
def send_email(to_email, subject, body):
    # For demo purposes, we'll just print the email details
    st.write(f"Email sent to: {to_email}")
    st.write(f"Subject: {subject}")
    st.write(f"Body: {body}")
    return "Email sent successfully"

tools = [
    Tool(
        name="Send Email",
        func=send_email,
        description="Useful for sending emails to leads"
    )
]

# Define the prompt
prompt = PromptTemplate.from_template(
    """You are an AI CyberSecurity Program Advisor. Your goal is to engage with leads and get them to book a video call for an in-person sales meeting. You have access to a list of leads and can send emails.

You have access to the following tools:

{tools}

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: [Insert your final response here]
Begin!

Question: {input}
Thought: Let's approach this step-by-step:
{agent_scratchpad}"""
)

# Create the React agent
agent = create_react_agent(
    llm=local_llm, 
    tools=tools, 
    prompt=prompt
)

# Create the agent executor
agent_executor = AgentExecutor.from_agent_and_tools(
    agent=agent, 
    tools=tools, 
    verbose=True, 
    memory=ConversationBufferMemory()
)

# Streamlit interface
st.title("AI CyberSecurity Program Advisor Demo")

st.write("This demo showcases an AI agent that can engage with leads and attempt to book video calls for sales meetings.")

# Start a conversation with a predefined lead
lead = LEADS[0]
initial_message = f"Hello {lead['name']}, I'd like to discuss our cybersecurity program with {lead['company']}. Are you available for a quick video call?"

if st.button("Start Conversation"):
    with st.spinner("AI is generating a response..."):
        response = agent_executor.invoke({"input": initial_message})
        st.write("AI Response:")
        st.write(response)  # Display the full response dictionary

st.sidebar.title("About")
st.sidebar.info("This is a demo of an AI CyberSecurity Program Advisor using an open-source LLM and LangChain. It's designed to engage with leads and attempt to book video calls for sales meetings.")