File size: 4,714 Bytes
8797584
 
 
 
 
 
 
486bb07
8797584
9086088
28552b3
486bb07
 
 
 
 
 
8797584
 
 
22134cc
8797584
 
 
 
 
 
 
 
 
 
 
 
486bb07
8797584
486bb07
 
 
 
 
 
 
 
 
 
 
8797584
 
 
 
 
 
486bb07
 
8797584
 
9c95680
8797584
486bb07
 
28552b3
486bb07
 
 
 
 
 
8797584
486bb07
 
 
8797584
486bb07
8797584
486bb07
 
 
ef77a2c
 
 
 
 
 
 
 
8797584
 
486bb07
8797584
9086088
 
 
 
 
8797584
 
 
486bb07
 
 
 
 
 
e28f41a
486bb07
 
 
f4f4ef5
486bb07
 
 
 
 
 
 
9086088
 
 
 
 
 
 
 
 
 
 
 
 
28552b3
 
486bb07
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import streamlit as st
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_huggingface import HuggingFacePipeline
from langchain.agents import create_react_agent, AgentExecutor, Tool
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.schema import AgentAction, AgentFinish

# Email configuration
SENDER_EMAIL = "[email protected]"  # Replace with your email
SENDER_PASSWORD = "Achuta@86"  # Replace with your email password
SMTP_SERVER = "smtp.gmail.com"  # Replace with your SMTP server
SMTP_PORT = 587  # Replace with your SMTP port

# Set up the open-source LLM
@st.cache_resource
def load_model():
    model_name = "google/flan-t5-small"  # Changed from 'large' to 'small'
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    pipe = pipeline(
        "text2text-generation",
        model=model, 
        tokenizer=tokenizer, 
        max_length=512
    )
    return HuggingFacePipeline(pipeline=pipe)

local_llm = load_model()

def send_email(to_email, subject, body):
    try:
        message = MIMEMultipart()
        message["From"] = SENDER_EMAIL
        message["To"] = to_email
        message["Subject"] = subject
        message.attach(MIMEText(body, "plain"))

        with smtplib.SMTP(SMTP_SERVER, SMTP_PORT) as server:
            server.starttls()
            server.login(SENDER_EMAIL, SENDER_PASSWORD)
            server.send_message(message)
        return "Email sent successfully"
    except Exception as e:
        return f"Failed to send email: {str(e)}"

tools = [
    Tool(
        name="Send Email",
        func=send_email,
        description="Sends an email. Args: to_email, subject, body"
    )
]

prompt = PromptTemplate.from_template(
    """You are a helpful assistant scheduling cybersecurity program meetings. 
    Your task is to collect the user's name, email, and preferred meeting date, then send a meeting invitation.

    Use the following format:
    Human: <user's input>
    Assistant: <your response>
    Human: <user's input>
    Assistant: <your response>
    ...

    Once you have all the information, use the Send Email tool to send the invitation.
    The email should include this Zoom link: https://us04web.zoom.us/j/73793374638?pwd=S0TEJ30da7dhQ8viOdafMzPfCVzoLJ.1
    And this Meeting ID: 737 9337 4638

    Begin the conversation by asking for the user's name.

    {chat_history}
    Human: {input}
    Assistant: Let's proceed step by step:
    {agent_scratchpad}

    Tools available:
    {tools}

    Tool names:
    {tool_names}
    """
)

agent = create_react_agent(local_llm, tools, prompt)
agent_executor = AgentExecutor.from_agent_and_tools(
    agent=agent, 
    tools=tools, 
    verbose=True, 
    memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True),
    handle_parsing_errors=True
)

# Streamlit interface
st.title("CyberSecurity Program Meeting Scheduler")

st.write("Chat with the AI to schedule your meeting. The AI will ask for your name, email, and preferred meeting date.")

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if prompt := st.chat_input("Your message"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            try:
                response = agent_executor({"input": prompt})
                if isinstance(response, dict) and "output" in response:
                    assistant_response = response["output"]
                elif isinstance(response, (AgentAction, AgentFinish)):
                    assistant_response = response.return_values.get("output", str(response))
                else:
                    assistant_response = str(response)
                
                st.markdown(assistant_response)
                st.session_state.messages.append({"role": "assistant", "content": assistant_response})
            except Exception as e:
                st.error(f"An error occurred: {str(e)}")

st.sidebar.title("About")
st.sidebar.info("This is an interactive CyberSecurity Program Meeting Scheduler. Chat with the AI to schedule your meeting. It will collect your information and send a meeting invitation via email.")

# To run this script, use: streamlit run your_script_name.py