|
import dataclasses
|
|
import json
|
|
import math
|
|
from collections import OrderedDict
|
|
from functools import partial, wraps
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import Optional, Tuple, List
|
|
from tqdm import tqdm
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import rearrange
|
|
from torch import Tensor
|
|
from torch.nn import functional as F
|
|
from torch.utils.checkpoint import checkpoint
|
|
|
|
|
|
def find_multiple(n: int, k: int) -> int:
|
|
if n % k == 0:
|
|
return n
|
|
return n + k - (n % k)
|
|
|
|
def l2norm(t, groups = 1):
|
|
t = rearrange(t, '... (g d) -> ... g d', g = groups)
|
|
t = F.normalize(t, p = 2, dim = -1)
|
|
return rearrange(t, '... g d -> ... (g d)')
|
|
|
|
@dataclass
|
|
class BaseModelArgs:
|
|
model_type: str = "base"
|
|
|
|
vocab_size: int = 32000
|
|
n_layer: int = 32
|
|
n_head: int = 32
|
|
dim: int = 4096
|
|
intermediate_size: int = None
|
|
n_local_heads: int = -1
|
|
head_dim: int = 64
|
|
rope_base: float = 10000
|
|
norm_eps: float = 1e-5
|
|
max_seq_len: int = 4096
|
|
dropout: float = 0.0
|
|
tie_word_embeddings: bool = True
|
|
attention_qkv_bias: bool = False
|
|
|
|
|
|
use_gradient_checkpointing: bool = False
|
|
|
|
|
|
initializer_range: float = 0.02
|
|
|
|
qk_norm: bool = False
|
|
layerscale: bool = False
|
|
|
|
def __post_init__(self):
|
|
if self.n_local_heads == -1:
|
|
self.n_local_heads = self.n_head
|
|
if self.intermediate_size is None:
|
|
hidden_dim = 4 * self.dim
|
|
n_hidden = int(2 * hidden_dim / 3)
|
|
self.intermediate_size = find_multiple(n_hidden, 256)
|
|
self.head_dim = self.dim // self.n_head
|
|
|
|
def save(self, path: str):
|
|
with open(path, "w") as f:
|
|
json.dump(self.__dict__, f, indent=4, sort_keys=True, ensure_ascii=False)
|
|
|
|
|
|
@dataclass
|
|
class NaiveModelArgs(BaseModelArgs):
|
|
model_type: str = "naive"
|
|
|
|
|
|
class KVCache(nn.Module):
|
|
def __init__(
|
|
self, max_batch_size, max_seq_len, n_heads, head_dim, dtype=torch.bfloat16
|
|
):
|
|
super().__init__()
|
|
cache_shape = (max_batch_size, n_heads, max_seq_len, head_dim)
|
|
self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype))
|
|
self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype))
|
|
|
|
def update(self, input_pos, k_val, v_val):
|
|
|
|
assert input_pos.shape[0] == k_val.shape[2]
|
|
|
|
k_out = self.k_cache
|
|
v_out = self.v_cache
|
|
k_out[:, :, input_pos] = k_val
|
|
v_out[:, :, input_pos] = v_val
|
|
|
|
return k_out, v_out
|
|
|
|
|
|
@dataclass
|
|
class TransformerForwardResult:
|
|
token_logits: Tensor
|
|
token_targets: Tensor
|
|
|
|
|
|
@dataclass
|
|
class BaseTransformerForwardResult:
|
|
logits: Tensor
|
|
hidden_states: Tensor
|
|
|
|
|
|
class BaseTransformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: BaseModelArgs,
|
|
init_weights: bool = True,
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
|
|
self.embeddings = nn.Embedding(
|
|
config.vocab_size,
|
|
config.dim,
|
|
)
|
|
self.layers = nn.ModuleList(
|
|
TransformerBlock(config, use_sdpa=True) for _ in range(config.n_layer)
|
|
)
|
|
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
|
|
|
if self.config.tie_word_embeddings is False:
|
|
self.output = nn.Linear(
|
|
config.dim,
|
|
config.vocab_size,
|
|
bias=False,
|
|
)
|
|
|
|
self.register_buffer(
|
|
"freqs_cis",
|
|
precompute_freqs_cis(
|
|
config.max_seq_len,
|
|
config.dim // config.n_head,
|
|
config.rope_base,
|
|
),
|
|
persistent=False,
|
|
)
|
|
self.register_buffer(
|
|
"causal_mask",
|
|
torch.tril(
|
|
torch.ones(
|
|
config.max_seq_len,
|
|
config.max_seq_len,
|
|
dtype=torch.bool,
|
|
)
|
|
),
|
|
persistent=False,
|
|
)
|
|
|
|
self.output = nn.Linear(
|
|
config.dim,
|
|
config.vocab_size,
|
|
bias=False,
|
|
)
|
|
|
|
|
|
self.max_batch_size = -1
|
|
self.max_seq_len = -1
|
|
|
|
if init_weights:
|
|
self.apply(self._init_weights)
|
|
|
|
def setup_caches(
|
|
self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16, device: torch.device = "cuda"
|
|
):
|
|
if self.max_seq_len >= max_seq_len and self.max_batch_size >= max_batch_size:
|
|
return
|
|
|
|
head_dim = self.config.dim // self.config.n_head
|
|
max_seq_len = find_multiple(max_seq_len, 8)
|
|
self.max_seq_len = max_seq_len
|
|
self.max_batch_size = max_batch_size
|
|
|
|
for b in self.layers:
|
|
b.attention.kv_cache = KVCache(
|
|
max_batch_size,
|
|
max_seq_len,
|
|
self.config.n_local_heads,
|
|
head_dim,
|
|
dtype=dtype,
|
|
).to(device)
|
|
|
|
def embed_base(self, x: Tensor, x_lens: Tensor) -> Tensor:
|
|
for bib in range(x.size(0)):
|
|
x[bib, x_lens[bib]:] = self.config.vocab_size - 1
|
|
|
|
x_emb = self.embeddings(x)
|
|
return x, x_emb
|
|
|
|
def forward(
|
|
self,
|
|
inp: Tensor,
|
|
key_padding_mask: Optional[Tensor] = None,
|
|
input_pos: Optional[Tensor] = None,
|
|
) -> BaseTransformerForwardResult:
|
|
seq_len = inp.size(1)
|
|
|
|
|
|
|
|
x = inp.clone()
|
|
|
|
if input_pos is None:
|
|
freqs_cis = self.freqs_cis[:seq_len].repeat(inp.size(0), 1, 1, 1)
|
|
else:
|
|
freqs_cis = self.freqs_cis[input_pos]
|
|
|
|
|
|
|
|
|
|
mask = None
|
|
if key_padding_mask is not None:
|
|
mask = self.causal_mask[None, None, :seq_len, :seq_len]
|
|
mask = mask & key_padding_mask[:, None, None, :].logical_not()
|
|
|
|
for layer in self.layers:
|
|
if self.config.use_gradient_checkpointing and self.training:
|
|
x = checkpoint(layer, x, freqs_cis, mask, use_reentrant=True)
|
|
else:
|
|
x = layer(x, freqs_cis, mask)
|
|
|
|
|
|
slow_out = self.norm(x)
|
|
|
|
if self.config.tie_word_embeddings:
|
|
token_logits = F.linear(slow_out, self.embeddings.weight)
|
|
else:
|
|
token_logits = self.output(slow_out)
|
|
|
|
return BaseTransformerForwardResult(
|
|
logits=token_logits,
|
|
hidden_states=x,
|
|
)
|
|
|
|
def forward_generate(
|
|
self,
|
|
inp: Tensor,
|
|
input_pos: Optional[Tensor] = None,
|
|
kv_pos: Optional[Tensor] = None,
|
|
return_all: bool = False,
|
|
) -> BaseTransformerForwardResult:
|
|
|
|
|
|
x = inp
|
|
max_seq_len = self.max_seq_len
|
|
|
|
mask = self.causal_mask[None, None, kv_pos, :max_seq_len]
|
|
freqs_cis = self.freqs_cis[input_pos]
|
|
|
|
for layer in self.layers:
|
|
x = layer(x, freqs_cis, mask, input_pos=kv_pos)
|
|
|
|
x = x[:, -1:]
|
|
|
|
|
|
slow_out = self.norm(x)
|
|
|
|
token_logits = self.output(slow_out)
|
|
|
|
return BaseTransformerForwardResult(
|
|
logits=token_logits,
|
|
hidden_states=x,
|
|
)
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
class NaiveTransformer(BaseTransformer):
|
|
def __init__(self, config: NaiveModelArgs) -> None:
|
|
super().__init__(config, init_weights=False)
|
|
self.apply(self._init_weights)
|
|
|
|
def forward(
|
|
self,
|
|
inp: Tensor,
|
|
cond_lens: Tensor,
|
|
target: Tensor,
|
|
target_lens: Tensor,
|
|
key_padding_mask: Optional[Tensor] = None,
|
|
input_pos: Optional[Tensor] = None,
|
|
) -> TransformerForwardResult:
|
|
parent_result = super().forward(
|
|
inp=inp,
|
|
key_padding_mask=key_padding_mask,
|
|
input_pos=input_pos,
|
|
)
|
|
token_logits = parent_result.logits
|
|
|
|
|
|
token_targets = torch.zeros(token_logits.size(0), token_logits.size(1), dtype=torch.long,
|
|
device=target.device) - 100
|
|
for bib in range(token_targets.size(0)):
|
|
token_targets[bib, cond_lens[bib] + 1:cond_lens[bib] + target_lens[bib] + 1] = target[bib, :target_lens[bib]]
|
|
token_targets[bib, cond_lens[bib] + target_lens[bib] + 1] = self.config.vocab_size - 1
|
|
return TransformerForwardResult(
|
|
token_logits=token_logits,
|
|
token_targets=token_targets,
|
|
)
|
|
|
|
def infer_slow(self, inp: Tensor, input_pos: Optional[Tensor] = None):
|
|
|
|
parent_result = super().forward(inp, input_pos=input_pos)
|
|
latent = parent_result.hidden_states[:, -1]
|
|
base_logits = parent_result.logits[:, -1]
|
|
base_sampled, _ = topk_sampling(base_logits, top_k=-1, top_p=1.0)
|
|
return base_sampled
|
|
|
|
def forward_generate(
|
|
self,
|
|
x: Tensor,
|
|
input_pos: Optional[Tensor] = None,
|
|
kv_pos: Optional[Tensor] = None,
|
|
vq_masks: Optional[Tensor] = None,
|
|
) -> TransformerForwardResult:
|
|
x = super().forward_generate(x, input_pos, kv_pos, vq_masks)
|
|
return x
|
|
|
|
class NaiveWrapper(nn.Module):
|
|
def __init__(self, model: NaiveTransformer) -> None:
|
|
super().__init__()
|
|
self.model = model
|
|
self.sep_token_emb = nn.Parameter(torch.randn(model.config.dim))
|
|
|
|
def setup_caches(self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16, device: torch.device = "cuda"):
|
|
self.model.setup_caches(max_batch_size, max_seq_len, dtype, device)
|
|
|
|
def forward(self, cond: Tensor, cond_lens: Tensor, x: Tensor, x_lens: Tensor) -> torch.Tensor:
|
|
|
|
sep_token_emb = self.sep_token_emb.expand(x.size(0), 1, -1)
|
|
_, x_emb = self.model.embed_base(x, x_lens)
|
|
emb_seq_list = []
|
|
for i in range(x.size(0)):
|
|
emb_seq = torch.cat([
|
|
sep_token_emb[i:i + 1],
|
|
cond[i:i+1, :cond_lens[i]],
|
|
sep_token_emb[i:i+1],
|
|
x_emb[i:i+1, :x_lens[i]]], dim=1)
|
|
emb_seq_list.append(emb_seq)
|
|
max_len = max([emb_seq.size(1) for emb_seq in emb_seq_list])
|
|
emb_seq = torch.cat([
|
|
F.pad(emb_seq, (0, 0, 0, max_len - emb_seq.size(1)), value=0)
|
|
for emb_seq in emb_seq_list
|
|
], dim=0)
|
|
|
|
input_pos = torch.zeros(emb_seq.size(0), emb_seq.size(1), device=emb_seq.device, dtype=torch.long)
|
|
for i in range(x.size(0)):
|
|
input_pos[i, :cond_lens[i] + 1] = torch.arange(cond_lens[i] + 1, device=emb_seq.device)
|
|
input_pos[i, cond_lens[i] + 1: cond_lens[i] + x_lens[i] + 2] = torch.arange(x_lens[i] + 1, device=emb_seq.device)
|
|
out = self.model(emb_seq, cond_lens, x, x_lens, input_pos=input_pos)
|
|
loss = F.cross_entropy(out.token_logits.transpose(1, 2), out.token_targets.long(), ignore_index=-100)
|
|
return loss
|
|
|
|
@torch.no_grad()
|
|
def infer(self, cond: Tensor) -> torch.Tensor:
|
|
sep_token_emb = self.sep_token_emb.expand(1, 1, -1)
|
|
emb_seq = torch.cat([sep_token_emb, cond, sep_token_emb], dim=1)
|
|
pred_codes = []
|
|
input_pos = torch.arange(cond.size(1) + 1, device=cond.device)
|
|
for i in tqdm(range(4000)):
|
|
input_pos = torch.cat([input_pos, torch.LongTensor([i]).to(cond.device)], dim=0)
|
|
base = self.model.infer_slow(emb_seq, input_pos)
|
|
if base == self.model.config.vocab_size - 1:
|
|
break
|
|
new_emb = self.model.embed_base(base, torch.LongTensor([1]).to(base.device))[1]
|
|
emb_seq = torch.cat([emb_seq, new_emb], dim=1)
|
|
pred_codes.append(base)
|
|
return torch.cat(pred_codes, dim=-1)
|
|
|
|
@torch.no_grad()
|
|
def generate(
|
|
self,
|
|
prompt_text,
|
|
prompt_target,
|
|
compiled_decode_fn = None,
|
|
**sampling_kwargs,
|
|
):
|
|
sep_token_emb = self.sep_token_emb.expand(1, 1, -1)
|
|
emb_seq = torch.cat([sep_token_emb, prompt_text, sep_token_emb], dim=1)
|
|
input_pos = torch.arange(prompt_text.size(1) + 1, device=emb_seq.device)
|
|
input_pos = torch.cat([input_pos, torch.LongTensor([0]).to(emb_seq.device)])
|
|
prompt_target_emb = self.model.embed_base(prompt_target,torch.LongTensor([prompt_target.size(1)]).to(prompt_target.device))[1]
|
|
emb_seq = torch.cat([emb_seq, prompt_target_emb], dim=1)
|
|
input_pos = torch.cat([input_pos, torch.arange(prompt_target_emb.size(1)).to(input_pos.device) + 1])
|
|
|
|
pred_codes = []
|
|
kv_pos = torch.arange(emb_seq.size(1), device=emb_seq.device)
|
|
next_tokens = self.decode_one_token_ar(emb_seq, input_pos, kv_pos, suppress_tokens=[self.model.config.vocab_size - 1], **sampling_kwargs)
|
|
pred_base = next_tokens[0]
|
|
pred_codes.append(pred_base)
|
|
new_emb = self.model.embed_base(pred_base.unsqueeze(0), torch.LongTensor([1]).to(pred_base.device))[1]
|
|
emb_seq = torch.cat([emb_seq, new_emb], dim=1)
|
|
for _ in tqdm(range(4000)):
|
|
suppress_eos = len(pred_codes) < 10
|
|
input_pos = input_pos[-1:] + 1
|
|
kv_pos = kv_pos[-1:] + 1
|
|
next_tokens = self.decode_one_token_ar(
|
|
emb_seq[:, -1:].reshape(1, 1, -1),
|
|
input_pos.reshape(1),
|
|
kv_pos.reshape(1),
|
|
previous_tokens=torch.cat(pred_codes),
|
|
suppress_tokens=[self.model.config.vocab_size - 1] if suppress_eos else None,
|
|
compiled_decode_fn=compiled_decode_fn,
|
|
**sampling_kwargs)
|
|
pred_base = next_tokens[0]
|
|
if pred_base == self.model.config.vocab_size - 1:
|
|
break
|
|
pred_codes.append(pred_base.clone())
|
|
new_emb = self.model.embed_base(pred_base.unsqueeze(0), torch.LongTensor([1]).to(pred_base.device))[1]
|
|
emb_seq = torch.cat([emb_seq, new_emb], dim=1)
|
|
return torch.stack(pred_codes, dim=-1)
|
|
|
|
def decode_one_token_ar(
|
|
self,
|
|
x: torch.Tensor,
|
|
input_pos: torch.Tensor,
|
|
kv_pos: torch.Tensor,
|
|
previous_tokens: torch.Tensor = None,
|
|
compiled_decode_fn = None,
|
|
**sampling_kwargs,
|
|
) -> torch.Tensor:
|
|
if compiled_decode_fn is not None:
|
|
x = compiled_decode_fn(x, input_pos, kv_pos)
|
|
else:
|
|
x = self.model.forward_generate(x, input_pos, kv_pos)
|
|
|
|
sampling_kwargs_main = sampling_kwargs.copy()
|
|
codebooks = [
|
|
sample(
|
|
x.logits,
|
|
previous_tokens=(
|
|
previous_tokens[0] if previous_tokens is not None else None
|
|
),
|
|
**sampling_kwargs_main,
|
|
)[0]
|
|
]
|
|
codebooks = torch.stack(codebooks, dim=0)
|
|
return codebooks
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, config: BaseModelArgs, use_sdpa: bool = True) -> None:
|
|
super().__init__()
|
|
self.attention = Attention(config, use_sdpa=use_sdpa)
|
|
self.feed_forward = FeedForward(config)
|
|
self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
|
|
self.attention_norm = RMSNorm(config.dim, config.norm_eps)
|
|
|
|
def forward(
|
|
self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Tensor = None
|
|
) -> Tensor:
|
|
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos)
|
|
out = h + self.feed_forward(self.ffn_norm(h))
|
|
return out
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, config: BaseModelArgs, use_sdpa: bool = True):
|
|
super().__init__()
|
|
assert config.dim % config.n_head == 0
|
|
|
|
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
|
|
|
|
self.wqkv = nn.Linear(
|
|
config.dim, total_head_dim, bias=config.attention_qkv_bias
|
|
)
|
|
self.wo = nn.Linear(config.dim, config.dim, bias=False)
|
|
self.kv_cache = None
|
|
|
|
self.dropout = config.dropout
|
|
self.n_head = config.n_head
|
|
self.head_dim = config.head_dim
|
|
self.n_local_heads = config.n_local_heads
|
|
self.dim = config.dim
|
|
self.use_sdpa = use_sdpa
|
|
self._register_load_state_dict_pre_hook(self.load_hook)
|
|
self.qk_norm = config.qk_norm
|
|
self.qk_norm_groups = 1
|
|
self.qk_norm_scale = 10
|
|
self.qk_norm_dim_scale = False
|
|
self.qk_norm_q_scale = self.qk_norm_k_scale = 1
|
|
|
|
if self.qk_norm and self.qk_norm_dim_scale:
|
|
self.qk_norm_q_scale = nn.Parameter(torch.ones(self.n_head, 1, self.head_dim))
|
|
self.qk_norm_k_scale = nn.Parameter(torch.ones(self.n_head, 1, self.head_dim))
|
|
def load_hook(self, state_dict, prefix, *args):
|
|
if prefix + "wq.weight" in state_dict:
|
|
wq = state_dict.pop(prefix + "wq.weight")
|
|
wk = state_dict.pop(prefix + "wk.weight")
|
|
wv = state_dict.pop(prefix + "wv.weight")
|
|
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
|
|
|
|
def forward(
|
|
self,
|
|
x: Tensor,
|
|
freqs_cis: Tensor,
|
|
mask: Tensor,
|
|
input_pos: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
bsz, seqlen, _ = x.shape
|
|
|
|
kv_size = self.n_local_heads * self.head_dim
|
|
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
|
|
|
|
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
|
|
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
|
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
|
|
|
if self.qk_norm:
|
|
qk_l2norm = partial(l2norm, groups = self.qk_norm_groups)
|
|
q, k = map(qk_l2norm, (q, k))
|
|
scale = self.qk_norm_scale
|
|
|
|
q = q * self.qk_norm_q_scale
|
|
k = k * self.qk_norm_k_scale
|
|
|
|
q = apply_rotary_emb(q, freqs_cis)
|
|
k = apply_rotary_emb(k, freqs_cis)
|
|
|
|
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
|
|
|
if self.kv_cache is not None:
|
|
k, v = self.kv_cache.update(input_pos, k, v)
|
|
|
|
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
|
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
|
|
|
if self.use_sdpa:
|
|
if mask is None:
|
|
y = F.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
dropout_p=self.dropout if self.training else 0.0,
|
|
is_causal=True,
|
|
|
|
)
|
|
else:
|
|
y = F.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=mask,
|
|
dropout_p=self.dropout if self.training else 0.0,
|
|
)
|
|
else:
|
|
y = self.eq_scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=mask,
|
|
dropout_p=self.dropout if self.training else 0.0,
|
|
)
|
|
|
|
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
|
|
|
|
return self.wo(y)
|
|
|
|
def eq_scaled_dot_product_attention(
|
|
self,
|
|
query,
|
|
key,
|
|
value,
|
|
attn_mask=None,
|
|
dropout_p=0.0,
|
|
) -> torch.Tensor:
|
|
|
|
|
|
|
|
L, S = query.size(-2), key.size(-2)
|
|
scale_factor = 1 / math.sqrt(query.size(-1))
|
|
attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device)
|
|
|
|
if attn_mask is not None:
|
|
if attn_mask.dtype == torch.bool:
|
|
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
|
else:
|
|
attn_bias += attn_mask
|
|
|
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
|
attn_weight += attn_bias
|
|
attn_weight = torch.softmax(attn_weight, dim=-1)
|
|
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
|
|
|
return attn_weight @ value
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, config: BaseModelArgs) -> None:
|
|
super().__init__()
|
|
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
|
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
|
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
|
|
self.dropout = nn.Dropout(p=config.dropout)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
return self.w2(self.dropout(F.silu(self.w1(x)) * self.w3(x)))
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, dim: int, eps: float = 1e-5):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def _norm(self, x):
|
|
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
output = self._norm(x.float()).type_as(x)
|
|
return output * self.weight
|
|
|
|
|
|
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor:
|
|
freqs = 1.0 / (
|
|
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
|
|
)
|
|
t = torch.arange(seq_len, device=freqs.device)
|
|
freqs = torch.outer(t, freqs)
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
|
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
|
|
return cache.to(dtype=torch.bfloat16)
|
|
|
|
|
|
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
|
|
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
|
|
freqs_cis = freqs_cis.view(x.size(0), xshaped.size(1), 1, xshaped.size(3), 2)
|
|
x_out2 = torch.stack(
|
|
[
|
|
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
|
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
|
],
|
|
-1,
|
|
)
|
|
|
|
x_out2 = x_out2.flatten(3)
|
|
return x_out2.type_as(x)
|
|
|
|
def top_k_top_p_filtering(
|
|
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
|
|
):
|
|
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
|
Args:
|
|
logits: logits distribution shape (batch size, vocabulary size)
|
|
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
|
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
|
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
|
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
|
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
|
"""
|
|
if top_k > 0:
|
|
top_k = min(
|
|
max(top_k, min_tokens_to_keep), logits.size(-1)
|
|
)
|
|
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
|
logits[indices_to_remove] = filter_value
|
|
|
|
if top_p < 1.0:
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
cumulative_probs = torch.cumsum(
|
|
F.softmax(sorted_logits, dim=-1), dim=-1
|
|
)
|
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p
|
|
if min_tokens_to_keep > 1:
|
|
|
|
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
|
|
..., :-1
|
|
].clone()
|
|
sorted_indices_to_remove[..., 0] = 0
|
|
|
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter(
|
|
1, sorted_indices, sorted_indices_to_remove
|
|
)
|
|
logits[indices_to_remove] = filter_value
|
|
return logits
|
|
|
|
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if temperature != 1.0:
|
|
logits = logits / temperature
|
|
|
|
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
|
|
|
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
|
logprobs = F.log_softmax(logits.float(), dim=-1)
|
|
current_logprobs = logprobs[torch.arange(logprobs.shape[0]), token.squeeze(1)]
|
|
return token, current_logprobs
|
|
|
|
def sample(
|
|
logits,
|
|
previous_tokens: Optional[torch.Tensor] = None,
|
|
**sampling_kwargs,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
probs = logits_to_probs(
|
|
logits=logits[0, -1], previous_tokens=previous_tokens, **sampling_kwargs
|
|
)
|
|
idx_next = multinomial_sample_one_no_sync(probs)
|
|
return idx_next, probs
|
|
|
|
def multinomial_sample_one_no_sync(
|
|
probs_sort,
|
|
):
|
|
q = torch.empty_like(probs_sort).exponential_(1)
|
|
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
|
|
|
|
|
def logits_to_probs(
|
|
logits,
|
|
previous_tokens: Optional[torch.Tensor] = None,
|
|
suppress_tokens: Optional[List[int]] = None,
|
|
temperature: torch.Tensor = 0.7,
|
|
top_p: torch.Tensor = 0.7,
|
|
repetition_penalty: torch.Tensor = 1.5,
|
|
) -> torch.Tensor:
|
|
|
|
if previous_tokens is not None:
|
|
previous_tokens = previous_tokens.long()
|
|
score = torch.gather(logits, dim=0, index=previous_tokens)
|
|
score = torch.where(
|
|
score < 0, score * repetition_penalty, score / repetition_penalty
|
|
)
|
|
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
|
if suppress_tokens is not None:
|
|
for token in suppress_tokens:
|
|
logits[token] = -float("Inf")
|
|
|
|
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
|
|
sorted_indices_to_remove = cum_probs > top_p
|
|
sorted_indices_to_remove[0] = False
|
|
indices_to_remove = sorted_indices_to_remove.scatter(
|
|
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
|
)
|
|
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
|
|
|
logits = logits / max(temperature, 1e-5)
|
|
|
|
probs = torch.nn.functional.softmax(logits, dim=-1)
|
|
return probs
|
|
|