Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,53 +3,31 @@ import json
|
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
import numpy as np
|
6 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
-
import torch
|
8 |
|
9 |
-
#
|
10 |
-
embedder = SentenceTransformer("paraphrase-MiniLM-L3-v2")
|
11 |
|
12 |
-
#
|
13 |
-
llm_model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
|
15 |
-
model = AutoModelForCausalLM.from_pretrained(llm_model_id)
|
16 |
-
|
17 |
-
# 3. Load memory-question data
|
18 |
with open("memory_questions.json", "r") as f:
|
19 |
memory_data = json.load(f)
|
20 |
|
21 |
memory_texts = [item['description'] for item in memory_data]
|
22 |
memory_embeddings = embedder.encode(memory_texts)
|
23 |
|
24 |
-
#
|
25 |
def generate_question(user_memory):
|
26 |
-
# (a) En benzer memory'yi bul
|
27 |
user_embedding = embedder.encode([user_memory])
|
28 |
similarities = cosine_similarity(user_embedding, memory_embeddings)[0]
|
29 |
best_match_index = np.argmax(similarities)
|
30 |
-
|
31 |
-
|
32 |
-
# (b) Prompt hazırlığı
|
33 |
-
prompt = f"<|system|>You are a helpful assistant who asks clear, meaningful questions based on short memories.<|user|>Memory: {matched_memory}\nGenerate a question that starts with What, Why, Who, When, or How.<|assistant|>"
|
34 |
-
|
35 |
-
# (c) LLM ile generate et
|
36 |
-
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
37 |
-
output = model.generate(input_ids, max_new_tokens=50, do_sample=False)
|
38 |
-
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
39 |
-
|
40 |
-
# (d) Sadece son üretilen kısmı al
|
41 |
-
if "<|assistant|>" in result:
|
42 |
-
result = result.split("<|assistant|>")[-1].strip()
|
43 |
-
|
44 |
-
return result
|
45 |
|
46 |
-
#
|
47 |
iface = gr.Interface(
|
48 |
fn=generate_question,
|
49 |
inputs=gr.Textbox(label="Your Memory"),
|
50 |
-
outputs=gr.Textbox(label="
|
51 |
-
title="MemoRease –
|
52 |
-
description="Enter a memory.
|
53 |
)
|
54 |
|
55 |
iface.launch()
|
|
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
import numpy as np
|
|
|
|
|
6 |
|
7 |
+
# Semantik model
|
8 |
+
embedder = SentenceTransformer("paraphrase-MiniLM-L3-v2")
|
9 |
|
10 |
+
# Veri yükle
|
|
|
|
|
|
|
|
|
|
|
11 |
with open("memory_questions.json", "r") as f:
|
12 |
memory_data = json.load(f)
|
13 |
|
14 |
memory_texts = [item['description'] for item in memory_data]
|
15 |
memory_embeddings = embedder.encode(memory_texts)
|
16 |
|
17 |
+
# Yalnızca eşleşen soruyu döndür
|
18 |
def generate_question(user_memory):
|
|
|
19 |
user_embedding = embedder.encode([user_memory])
|
20 |
similarities = cosine_similarity(user_embedding, memory_embeddings)[0]
|
21 |
best_match_index = np.argmax(similarities)
|
22 |
+
return memory_data[best_match_index]['question']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Arayüz
|
25 |
iface = gr.Interface(
|
26 |
fn=generate_question,
|
27 |
inputs=gr.Textbox(label="Your Memory"),
|
28 |
+
outputs=gr.Textbox(label="Matched Question"),
|
29 |
+
title="MemoRease – Smart Matched Question (No Hallucination)",
|
30 |
+
description="Enter a memory. You'll get the most relevant pre-written question from your dataset."
|
31 |
)
|
32 |
|
33 |
iface.launch()
|