Spaces:
Running
Running
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import torch | |
import gradio as gr | |
# LLaMA 2 Chat modeli | |
model_id = "meta-llama/Llama-2-7b-chat-hf" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, # CPU çalışıyorsan float32 olabilir | |
device_map="auto" | |
) | |
def generate_question(memory): | |
prompt = f"[INST] You are a helpful assistant. Based on this memory, generate a question that would help the user recall more details:\n\nMemory: {memory}\n\nQuestion: [/INST]" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=50) | |
result = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return result.split("Question:")[-1].strip() | |
# Arayüz | |
iface = gr.Interface( | |
fn=generate_question, | |
inputs=gr.Textbox(label="Your Memory"), | |
outputs=gr.Textbox(label="Generated Question"), | |
title="LLaMA Chat Question Generator" | |
) | |
iface.launch() | |