Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import
|
4 |
import torch
|
5 |
-
from transformers import AutoModel
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
-
#
|
10 |
-
model =
|
11 |
tokenizer = AutoTokenizer.from_pretrained("memorease/memorease-quizgen")
|
12 |
|
13 |
class Memory(BaseModel):
|
@@ -19,4 +18,4 @@ def generate(memory: Memory):
|
|
19 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
20 |
outputs = model.generate(**inputs, max_new_tokens=64)
|
21 |
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
22 |
-
return {"question": question}
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
|
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
+
# ✅ MODELİ DOĞRU ŞEKİLDE YÜKLE
|
9 |
+
model = AutoModelForCausalLM.from_pretrained("memorease/memorease-quizgen")
|
10 |
tokenizer = AutoTokenizer.from_pretrained("memorease/memorease-quizgen")
|
11 |
|
12 |
class Memory(BaseModel):
|
|
|
18 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
19 |
outputs = model.generate(**inputs, max_new_tokens=64)
|
20 |
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
return {"question": question}
|