File size: 9,614 Bytes
039d869
 
 
 
 
 
c7db60b
039d869
 
 
b7fa0fa
039d869
 
 
 
 
 
b7fa0fa
039d869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7db60b
039d869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import gradio as gr
import torch
from transformers import Qwen2_5OmniModel, Qwen2_5OmniProcessor
from qwen_omni_utils import process_mm_info
import soundfile as sf
import tempfile
import spaces

# Initialize the model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float16

model = Qwen2_5OmniModel.from_pretrained(
    "Qwen/Qwen2.5-Omni-7B",
    torch_dtype=torch_dtype,
    device_map="auto",
    enable_audio_output=True,
    # attn_implementation="flash_attention_2" if torch.cuda.is_available() else None
)

processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")

# System prompt
SYSTEM_PROMPT = {
    "role": "system",
    "content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."
}

# Voice options
VOICE_OPTIONS = {
    "Chelsie (Female)": "Chelsie",
    "Ethan (Male)": "Ethan"
}

@spaces.GPU
def process_input(user_input, chat_history, voice_type, enable_audio_output):
    # Prepare conversation history
    conversation = [SYSTEM_PROMPT]
    
    # Add previous chat history
    for user_msg, bot_msg in chat_history:
        conversation.append({"role": "user", "content": user_input_to_content(user_msg)})
        conversation.append({"role": "assistant", "content": bot_msg})
    
    # Add current user input
    conversation.append({"role": "user", "content": user_input_to_content(user_input)})
    
    # Prepare for inference
    text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
    audios, images, videos = process_mm_info(conversation, use_audio_in_video=True)
    
    inputs = processor(
        text=text, 
        audios=audios, 
        images=images, 
        videos=videos, 
        return_tensors="pt", 
        padding=True
    )
    inputs = inputs.to(model.device).to(model.dtype)
    
    # Generate response
    if enable_audio_output:
        text_ids, audio = model.generate(
            **inputs, 
            use_audio_in_video=True,
            return_audio=True,
            spk=voice_type
        )
        
        # Save audio to temporary file
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
            sf.write(
                tmp_file.name,
                audio.reshape(-1).detach().cpu().numpy(),
                samplerate=24000,
            )
            audio_path = tmp_file.name
    else:
        text_ids = model.generate(
            **inputs, 
            use_audio_in_video=True,
            return_audio=False
        )
        audio_path = None
    
    # Decode text response
    text_response = processor.batch_decode(
        text_ids, 
        skip_special_tokens=True, 
        clean_up_tokenization_spaces=False
    )[0]
    
    # Clean up text response
    text_response = text_response.strip()
    
    # Update chat history
    chat_history.append((user_input, text_response))
    
    # Prepare output
    if enable_audio_output and audio_path:
        return chat_history, text_response, audio_path
    else:
        return chat_history, text_response, None

def user_input_to_content(user_input):
    if isinstance(user_input, str):
        return user_input
    elif isinstance(user_input, dict):
        # Handle file uploads
        content = []
        if "text" in user_input and user_input["text"]:
            content.append({"type": "text", "text": user_input["text"]})
        if "image" in user_input and user_input["image"]:
            content.append({"type": "image", "image": user_input["image"]})
        if "audio" in user_input and user_input["audio"]:
            content.append({"type": "audio", "audio": user_input["audio"]})
        if "video" in user_input and user_input["video"]:
            content.append({"type": "video", "video": user_input["video"]})
        return content
    return user_input

def create_demo():
    with gr.Blocks(title="Qwen2.5-Omni Chat Demo", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Qwen2.5-Omni Multimodal Chat Demo")
        gr.Markdown("Experience the omni-modal capabilities of Qwen2.5-Omni through text, images, audio, and video interactions.")
        
        # Chat interface
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(height=600)
                with gr.Accordion("Advanced Options", open=False):
                    voice_type = gr.Dropdown(
                        choices=list(VOICE_OPTIONS.keys()),
                        value="Chelsie (Female)",
                        label="Voice Type"
                    )
                    enable_audio_output = gr.Checkbox(
                        value=True,
                        label="Enable Audio Output"
                    )
                
                # Multimodal input components
                with gr.Tabs():
                    with gr.TabItem("Text Input"):
                        text_input = gr.Textbox(
                            placeholder="Type your message here...",
                            label="Text Input"
                        )
                        text_submit = gr.Button("Send Text")
                    
                    with gr.TabItem("Multimodal Input"):
                        with gr.Row():
                            image_input = gr.Image(
                                type="filepath",
                                label="Upload Image"
                            )
                            audio_input = gr.Audio(
                                type="filepath",
                                label="Upload Audio"
                            )
                        with gr.Row():
                            video_input = gr.Video(
                                label="Upload Video"
                            )
                        additional_text = gr.Textbox(
                            placeholder="Additional text message...",
                            label="Additional Text"
                        )
                        multimodal_submit = gr.Button("Send Multimodal Input")
                
                clear_button = gr.Button("Clear Chat")
                
            with gr.Column(scale=1):
                gr.Markdown("## Model Capabilities")
                gr.Markdown("""
                **Qwen2.5-Omni can:**
                - Process and understand text
                - Analyze images and answer questions about them
                - Transcribe and understand audio
                - Analyze video content (with or without audio)
                - Generate natural speech responses
                """)
                
                gr.Markdown("### Example Prompts")
                gr.Examples(
                    examples=[
                        ["Describe what you see in this image", "image"],
                        ["What is being said in this audio clip?", "audio"],
                        ["What's happening in this video?", "video"],
                        ["Explain quantum computing in simple terms", "text"],
                        ["Generate a short story about a robot learning to paint", "text"]
                    ],
                    inputs=[text_input, gr.Textbox(visible=False)],
                    label="Text Examples"
                )
                
                audio_output = gr.Audio(
                    label="Model Speech Output",
                    visible=True,
                    autoplay=True
                )
                text_output = gr.Textbox(
                    label="Model Text Response",
                    interactive=False
                )
        
        # Text input handling
        text_submit.click(
            fn=lambda text: {"text": text},
            inputs=text_input,
            outputs=[chatbot],
            queue=False
        ).then(
            fn=process_input,
            inputs=[text_input, chatbot, voice_type, enable_audio_output],
            outputs=[chatbot, text_output, audio_output]
        )
        
        # Multimodal input handling
        def prepare_multimodal_input(image, audio, video, text):
            return {
                "text": text,
                "image": image,
                "audio": audio,
                "video": video
            }
        
        multimodal_submit.click(
            fn=prepare_multimodal_input,
            inputs=[image_input, audio_input, video_input, additional_text],
            outputs=[chatbot],
            queue=False
        ).then(
            fn=process_input,
            inputs=[{"image": image_input, "audio": audio_input, "video": video_input, "text": additional_text}, 
                   chatbot, voice_type, enable_audio_output],
            outputs=[chatbot, text_output, audio_output]
        )
        
        # Clear chat
        def clear_chat():
            return [], None, None
        
        clear_button.click(
            fn=clear_chat,
            outputs=[chatbot, text_output, audio_output]
        )
        
        # Update audio output visibility
        def toggle_audio_output(enable_audio):
            return gr.Audio(visible=enable_audio)
        
        enable_audio_output.change(
            fn=toggle_audio_output,
            inputs=enable_audio_output,
            outputs=audio_output
        )
    
    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch(server_name="0.0.0.0", server_port=7860)