Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,7 @@ import os
|
|
20 |
import requests
|
21 |
import time
|
22 |
import tempfile
|
|
|
23 |
|
24 |
API_KEY = os.environ.get("OPENROUTER_API_KEY")
|
25 |
|
@@ -82,18 +83,31 @@ qa_questions = list(qa_data.keys())
|
|
82 |
qa_answers = list(qa_data.values())
|
83 |
qa_embeddings = semantic_model.encode(qa_questions, convert_to_tensor=True)
|
84 |
#-------------------------bm25---------------------------------
|
85 |
-
from rank_bm25 import BM25Okapi
|
86 |
-
from nltk.tokenize import word_tokenize
|
87 |
-
import nltk
|
88 |
-
nltk.download('punkt')
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
def rerank_with_bm25(docs, query):
|
92 |
-
|
|
|
|
|
93 |
bm25 = BM25Okapi(tokenized_docs)
|
94 |
-
|
95 |
-
|
96 |
scores = bm25.get_scores(tokenized_query)
|
|
|
97 |
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:3]
|
98 |
return [docs[i] for i in top_indices]
|
99 |
|
|
|
20 |
import requests
|
21 |
import time
|
22 |
import tempfile
|
23 |
+
from langdetect import detect
|
24 |
|
25 |
API_KEY = os.environ.get("OPENROUTER_API_KEY")
|
26 |
|
|
|
83 |
qa_answers = list(qa_data.values())
|
84 |
qa_embeddings = semantic_model.encode(qa_questions, convert_to_tensor=True)
|
85 |
#-------------------------bm25---------------------------------
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
def detect_language(text):
|
88 |
+
try:
|
89 |
+
lang = detect(text)
|
90 |
+
return 'french' if lang.startswith('fr') else 'english'
|
91 |
+
except:
|
92 |
+
return 'english' # default fallback
|
93 |
+
|
94 |
+
def clean_and_tokenize(text, lang):
|
95 |
+
tokens = word_tokenize(text.lower(), language=lang)
|
96 |
+
try:
|
97 |
+
stop_words = set(stopwords.words(lang))
|
98 |
+
return [t for t in tokens if t not in stop_words]
|
99 |
+
except:
|
100 |
+
return tokens # fallback if stopwords not found
|
101 |
|
102 |
def rerank_with_bm25(docs, query):
|
103 |
+
lang = detect_language(query)
|
104 |
+
|
105 |
+
tokenized_docs = [clean_and_tokenize(doc['content'], lang) for doc in docs]
|
106 |
bm25 = BM25Okapi(tokenized_docs)
|
107 |
+
|
108 |
+
tokenized_query = clean_and_tokenize(query, lang)
|
109 |
scores = bm25.get_scores(tokenized_query)
|
110 |
+
|
111 |
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:3]
|
112 |
return [docs[i] for i in top_indices]
|
113 |
|