File size: 9,820 Bytes
c773e53 af6043c c773e53 af6043c c773e53 af6043c c773e53 af6043c c773e53 af6043c c773e53 af6043c c773e53 af6043c c773e53 af6043c c773e53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import chromadb
import pandas as pd
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
import json
import openai
from openai import OpenAI
import numpy as np
import requests
import chromadb
from chromadb import Client
from sentence_transformers import SentenceTransformer, util
from langchain_community.embeddings import HuggingFaceEmbeddings
from chromadb import Client
from chromadb import PersistentClient
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
import requests
#HF_TOKEN = os.getenv("HF_TOKEN")
API_KEY = os.environ.get("OPENROUTER_API_KEY")
# Load the Excel file
df = pd.read_excel("web_documents.xlsx", engine='openpyxl')
# Initialize Chroma Persistent Client
client = chromadb.PersistentClient(path="./db")
# Create (or get) the Chroma collection
collection = client.get_or_create_collection(
name="rag_web_db_cosine_full_documents",
metadata={"hnsw:space": "cosine"}
)
# Load the embedding model
embedding_model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2')
# Initialize the text splitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=150)
total_chunks = 0
# Process each row in the DataFrame
for idx, row in df.iterrows():
content = str(row['Content']) # Just in case it’s not a string
metadata_str = str(row['Metadata'])
# Convert metadata string back to a dictionary (optional: keep it simple if needed)
metadata = {"metadata": metadata_str}
# Split content into chunks
chunks = text_splitter.split_text(content)
total_chunks += len(chunks)
# Generate embeddings for each chunk
chunk_embeddings = embedding_model.encode(chunks)
# Add each chunk to the Chroma collection
for i, chunk in enumerate(chunks):
collection.add(
documents=[chunk],
metadatas=[metadata],
ids=[f"{idx}_chunk_{i}"],
embeddings=[chunk_embeddings[i]]
)
# ---------------------- Config ----------------------
SIMILARITY_THRESHOLD = 0.80
client1 = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY) # remplace par ta clé OpenRouter
# ---------------------- Models ----------------------
# High-accuracy model for semantic search
semantic_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
# For ChromaDB
#embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2")
# ---------------------- Load QA Data ----------------------
with open("qa.json", "r", encoding="utf-8") as f:
qa_data = json.load(f)
qa_questions = list(qa_data.keys())
qa_answers = list(qa_data.values())
qa_embeddings = semantic_model.encode(qa_questions, convert_to_tensor=True)
# ---------------------- CAG ----------------------
def retrieve_from_cag(user_query):
query_embedding = semantic_model.encode(user_query, convert_to_tensor=True)
cosine_scores = util.cos_sim(query_embedding, qa_embeddings)[0]
best_idx = int(np.argmax(cosine_scores))
best_score = float(cosine_scores[best_idx])
print(f"[CAG] Best score: {best_score:.4f} | Closest question: {qa_questions[best_idx]}")
if best_score >= SIMILARITY_THRESHOLD:
return qa_answers[best_idx], best_score
else:
return None, best_score
# ---------------------- RAG ----------------------
#client = chromadb.Client()
#collection = client.get_collection(name="rag_web_db_cosine_full_documents")
# Assuming you have a persistent Chroma client setup
#client = PersistentClient("./db_new/db_new")# Replace with the correct path if needed
#collection = client.get_collection(name="rag_web_db_cosine_full_documents")
# ---------------------- RAG retrieval ----------------------
def retrieve_from_rag(user_query):
print("Searching in RAG...")
query_embedding = embedding_model.encode(user_query)
results = collection.query(query_embeddings=[query_embedding], n_results=3)
if not results or not results.get('documents'):
return None
documents = []
for i, content in enumerate(results['documents'][0]):
metadata = results['metadatas'][0][i]
documents.append({
"content": content.strip(),
"metadata": metadata
})
print("Documents retrieved:", documents)
return documents
# ---------------------- Generation function (OpenRouter) ----------------------
def generate_via_openrouter(context, query):
print("\n--- Generating via OpenRouter ---")
print("Context received:", context)
prompt = f"""<s>[INST]
You are a Moodle expert assistant.
Instructions:
- Always respond in the same language as the question.
- Use only the provided documents below to answer.
- If the answer is not in the documents, simply say: "I don't know." / "Je ne sais pas."
- Cite only the sources you use, indicated at the end of each document like (Source: https://example.com).
Documents :
{context}
Question : {query}
Answer :
[/INST]
"""
try:
response = client1.chat.completions.create(
model="mistralai/mistral-small-3.1-24b-instruct:free",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content.strip()
except Exception as e:
print(f"Erreur lors de la génération : {e}")
return "Erreur lors de la génération."
# ---------------------- Generation function (Huggingface) ----------------------
def generate_via_huggingface(context, query, max_new_tokens=512, hf_token="your_huggingface_token"):
print("\n--- Generating via Huggingface ---")
print("Context received:", context)
prompt = f"""<s>[INST]
You are a Moodle expert assistant.
Rules:
- Answer only based on the provided documents.
- If the answer is not found, reply: "I don't know."
- Only cite sources mentioned (metadata 'source').
Documents:
{context}
Question: {query}
Answer:
[/INST]
"""
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
headers = {"Authorization": f"Bearer {hf_token}"}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_new_tokens
}
}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and "generated_text" in result[0]:
return result[0]["generated_text"].strip()
else:
return "Error: Unexpected response format."
else:
return f"Error {response.status_code}: {response.text}"
# ---------------------- Main Chatbot ----------------------
def chatbot(query):
print("\n==== New Query ====")
print("User Query:", query)
# Try to retrieve from CAG (cache)
answer, score = retrieve_from_cag(query)
if answer:
print("Answer retrieved from CAG cache.")
return answer
# If not found, retrieve from RAG
docs = retrieve_from_rag(query)
if docs:
context_blocks = []
for doc in docs:
content = doc.get("content", "").strip()
metadata = doc.get("metadata") or {}
source = "Source inconnue"
if isinstance(metadata, dict):
source_field = metadata.get("metadata", "")
if isinstance(source_field, str) and source_field.startswith("source:"):
source = source_field.replace("source:", "").strip()
context_blocks.append(f"{content}\n(Source: {source})")
context = "\n\n".join(context_blocks)
# Choose the generation backend (OpenRouter or Huggingface)
response = generate_via_openrouter(context, query)
return response
else:
print("No relevant documents found.")
return "Je ne sais pas."
# ---------------------- Gradio App ----------------------
# Define the chatbot response function
#def ask(user_message, chat_history):
# if not user_message:
# return chat_history, chat_history, ""
#
# Get chatbot response
# response = chatbot(user_message)
# Update chat history
# chat_history.append((user_message, response))
# return chat_history, chat_history, ""
# Initialize chat history with a welcome message
#initial_message = (None, "Hello, how can I help you with Moodle?")
# Build Gradio interface
#with gr.Blocks(theme=gr.themes.Soft()) as demo:
#chat_history = gr.State([initial_message]) # <-- Move inside here!
# chatbot_ui = gr.Chatbot(value=[initial_message])
# question = gr.Textbox(placeholder="Ask me anything about Moodle...", show_label=False)
# clear_button = gr.Button("Clear")
# question.submit(ask, [question, chat_history], [chatbot_ui, chat_history, question])
# clear_button.click(lambda: ([initial_message], [initial_message], ""), None, [chatbot_ui, chat_history, question], queue=False)
#demo.queue()
#demo.launch(share=False)
# Initialize chat history with a welcome message
initial_message = (None, "Hello, how can I help you with Moodle?")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
chat_history = gr.State([initial_message])
chatbot_ui = gr.Chatbot(value=[initial_message])
question = gr.Textbox(placeholder="Ask me anything about Moodle...", show_label=False)
clear_button = gr.Button("Clear")
save_button = gr.Button("Save Chat") # to save the chat
question.submit(ask, [question, chat_history], [chatbot_ui, chat_history, question])
clear_button.click(lambda: ([initial_message], [initial_message], ""), None, [chatbot_ui, chat_history, question], queue=False)
save_button.click(save_chat_to_file, [chat_history], None) # to save the chat
|