File size: 9,820 Bytes
c773e53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af6043c
 
 
 
c773e53
af6043c
c773e53
 
af6043c
 
c773e53
 
af6043c
c773e53
 
af6043c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c773e53
af6043c
c773e53
 
 
 
af6043c
c773e53
 
 
af6043c
c773e53
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import chromadb
import pandas as pd
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
import json
import openai
from openai import OpenAI
import numpy as np
import requests
import chromadb
from chromadb import Client 
from sentence_transformers import SentenceTransformer, util
from langchain_community.embeddings import HuggingFaceEmbeddings
from chromadb import Client
from chromadb import PersistentClient
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
import requests
#HF_TOKEN  = os.getenv("HF_TOKEN")

API_KEY = os.environ.get("OPENROUTER_API_KEY")


# Load the Excel file
df = pd.read_excel("web_documents.xlsx", engine='openpyxl')

# Initialize Chroma Persistent Client
client = chromadb.PersistentClient(path="./db")

# Create (or get) the Chroma collection
collection = client.get_or_create_collection(
    name="rag_web_db_cosine_full_documents",
    metadata={"hnsw:space": "cosine"}
)

# Load the embedding model
embedding_model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2')

# Initialize the text splitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=150)

total_chunks = 0

# Process each row in the DataFrame
for idx, row in df.iterrows():
    content = str(row['Content'])  # Just in case it’s not a string
    metadata_str = str(row['Metadata'])

    # Convert metadata string back to a dictionary (optional: keep it simple if needed)
    metadata = {"metadata": metadata_str}

    # Split content into chunks
    chunks = text_splitter.split_text(content)
    total_chunks += len(chunks)

    # Generate embeddings for each chunk
    chunk_embeddings = embedding_model.encode(chunks)

    # Add each chunk to the Chroma collection
    for i, chunk in enumerate(chunks):
        collection.add(
            documents=[chunk],
            metadatas=[metadata],
            ids=[f"{idx}_chunk_{i}"],
            embeddings=[chunk_embeddings[i]]
        )

# ---------------------- Config ----------------------
SIMILARITY_THRESHOLD = 0.80

client1 = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY)  # remplace par ta clé OpenRouter


# ---------------------- Models ----------------------
# High-accuracy model for semantic search
semantic_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")

# For ChromaDB
#embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2")

# ---------------------- Load QA Data ----------------------
with open("qa.json", "r", encoding="utf-8") as f:
    qa_data = json.load(f)

qa_questions = list(qa_data.keys())
qa_answers = list(qa_data.values())
qa_embeddings = semantic_model.encode(qa_questions, convert_to_tensor=True)

# ---------------------- CAG ----------------------
def retrieve_from_cag(user_query):
    query_embedding = semantic_model.encode(user_query, convert_to_tensor=True)
    cosine_scores = util.cos_sim(query_embedding, qa_embeddings)[0]
    best_idx = int(np.argmax(cosine_scores))
    best_score = float(cosine_scores[best_idx])

    print(f"[CAG] Best score: {best_score:.4f} | Closest question: {qa_questions[best_idx]}")
    if best_score >= SIMILARITY_THRESHOLD:
        return qa_answers[best_idx], best_score
    else:
        return None, best_score

# ---------------------- RAG ----------------------
#client = chromadb.Client()
#collection = client.get_collection(name="rag_web_db_cosine_full_documents")
# Assuming you have a persistent Chroma client setup
#client = PersistentClient("./db_new/db_new")# Replace with the correct path if needed
#collection = client.get_collection(name="rag_web_db_cosine_full_documents")
# ---------------------- RAG retrieval ----------------------
def retrieve_from_rag(user_query):
    print("Searching in RAG...")

    query_embedding = embedding_model.encode(user_query)
    results = collection.query(query_embeddings=[query_embedding], n_results=3)

    if not results or not results.get('documents'):
        return None

    documents = []
    for i, content in enumerate(results['documents'][0]):
        metadata = results['metadatas'][0][i]
        documents.append({
            "content": content.strip(),
            "metadata": metadata
        })
    print("Documents retrieved:", documents)
    return documents

# ---------------------- Generation function (OpenRouter) ----------------------
def generate_via_openrouter(context, query):
    print("\n--- Generating via OpenRouter ---")
    print("Context received:", context)

    prompt = f"""<s>[INST]
You are a Moodle expert assistant.
Instructions:
- Always respond in the same language as the question.
- Use only the provided documents below to answer.
- If the answer is not in the documents, simply say: "I don't know." / "Je ne sais pas."
- Cite only the sources you use, indicated at the end of each document like (Source: https://example.com).


Documents :
{context}

Question : {query}
Answer :
[/INST]
"""

    try:
        response = client1.chat.completions.create(
            model="mistralai/mistral-small-3.1-24b-instruct:free",
            messages=[{"role": "user", "content": prompt}]
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        print(f"Erreur lors de la génération : {e}")
        return "Erreur lors de la génération."

# ---------------------- Generation function (Huggingface) ----------------------
def generate_via_huggingface(context, query, max_new_tokens=512, hf_token="your_huggingface_token"):
    print("\n--- Generating via Huggingface ---")
    print("Context received:", context)

    prompt = f"""<s>[INST]
You are a Moodle expert assistant.

Rules:
- Answer only based on the provided documents.
- If the answer is not found, reply: "I don't know."
- Only cite sources mentioned (metadata 'source').

Documents:
{context}

Question: {query}
Answer:
[/INST]
"""

    API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
    headers = {"Authorization": f"Bearer {hf_token}"}
    payload = {
        "inputs": prompt,
        "parameters": {
            "max_new_tokens": max_new_tokens
        }
    }

    response = requests.post(API_URL, headers=headers, json=payload)

    if response.status_code == 200:
        result = response.json()
        if isinstance(result, list) and "generated_text" in result[0]:
            return result[0]["generated_text"].strip()
        else:
            return "Error: Unexpected response format."
    else:
        return f"Error {response.status_code}: {response.text}"

# ---------------------- Main Chatbot ----------------------
def chatbot(query):
    print("\n==== New Query ====")
    print("User Query:", query)

    # Try to retrieve from CAG (cache)
    answer, score = retrieve_from_cag(query)
    if answer:
        print("Answer retrieved from CAG cache.")
        return answer

    # If not found, retrieve from RAG
    docs = retrieve_from_rag(query)
    if docs:
        context_blocks = []
        for doc in docs:
            content = doc.get("content", "").strip()
            metadata = doc.get("metadata") or {}
            source = "Source inconnue"

            if isinstance(metadata, dict):
                source_field = metadata.get("metadata", "")
                if isinstance(source_field, str) and source_field.startswith("source:"):
                    source = source_field.replace("source:", "").strip()

            context_blocks.append(f"{content}\n(Source: {source})")

        context = "\n\n".join(context_blocks)

        # Choose the generation backend (OpenRouter or Huggingface)
        response = generate_via_openrouter(context, query)
        return response

    else:
        print("No relevant documents found.")
        return "Je ne sais pas."


# ---------------------- Gradio App ----------------------

# Define the chatbot response function
#def ask(user_message, chat_history):
 #   if not user_message:
  #      return chat_history, chat_history, ""
 #   
    # Get chatbot response
 #   response = chatbot(user_message)

    # Update chat history
  #  chat_history.append((user_message, response))
   # return chat_history, chat_history, ""

# Initialize chat history with a welcome message
#initial_message = (None, "Hello, how can I help you with Moodle?")

# Build Gradio interface
#with gr.Blocks(theme=gr.themes.Soft()) as demo:
    #chat_history = gr.State([initial_message])  # <-- Move inside here!

  #  chatbot_ui = gr.Chatbot(value=[initial_message])
  #  question = gr.Textbox(placeholder="Ask me anything about Moodle...", show_label=False)
   # clear_button = gr.Button("Clear")

  #  question.submit(ask, [question, chat_history], [chatbot_ui, chat_history, question])
   # clear_button.click(lambda: ([initial_message], [initial_message], ""), None, [chatbot_ui, chat_history, question], queue=False)

#demo.queue()
#demo.launch(share=False)
# Initialize chat history with a welcome message

initial_message = (None, "Hello, how can I help you with Moodle?")

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    chat_history = gr.State([initial_message])

    chatbot_ui = gr.Chatbot(value=[initial_message])
    question = gr.Textbox(placeholder="Ask me anything about Moodle...", show_label=False)
    clear_button = gr.Button("Clear")
    save_button = gr.Button("Save Chat")  # to save the chat 

    question.submit(ask, [question, chat_history], [chatbot_ui, chat_history, question])
    clear_button.click(lambda: ([initial_message], [initial_message], ""), None, [chatbot_ui, chat_history, question], queue=False)
    save_button.click(save_chat_to_file, [chat_history], None)  # to save the chat