File size: 11,619 Bytes
36e75e2 65a5316 36e75e2 b6ca76b f92c15e 65a5316 9044102 6bcb98e 9044102 6bcb98e 34a8bb0 cc2adeb 34a8bb0 cc2adeb 34a8bb0 cc2adeb 34a8bb0 cc2adeb 34a8bb0 cc2adeb 34a8bb0 cc2adeb 34a8bb0 cc2adeb 34a8bb0 cc2adeb 34a8bb0 380fa1d 34a8bb0 53aaa4a 34a8bb0 7a6dbef 34a8bb0 7a6dbef 34a8bb0 c429c7f 34a8bb0 dbf8ccd 34a8bb0 dbf8ccd c568787 dbf8ccd c568787 34a8bb0 dbf8ccd 34a8bb0 dbf8ccd 34a8bb0 dbf8ccd 34a8bb0 dbf8ccd 34a8bb0 dbf8ccd 34a8bb0 dbf8ccd c429c7f 34a8bb0 380fa1d 53aaa4a 380fa1d 53aaa4a 380fa1d 53aaa4a 380fa1d 53aaa4a 34a8bb0 95f6564 34a8bb0 380fa1d 34a8bb0 cc2adeb 53aaa4a c429c7f 53aaa4a c429c7f 53aaa4a 380fa1d 53aaa4a 380fa1d 53aaa4a 380fa1d 53aaa4a c429c7f 34a8bb0 53aaa4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import torch
import os
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
os.system("rm -r /home/user/app/gradio_cached_examples/14")
try:
import detectron2
except:
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
# os.system("python -m pip install detectron2==0.6 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html")
# os.system('git clone https://github.com/facebookresearch/detectron2.git --branch v0.6')
os.system('python -m pip install -e detectron2')
import sys
import cv2
import os
import glob
import shutil
import gdown
import zipfile
# import spaces
import time
import random
import gradio as gr
import numpy as np
from PIL import Image
from pathlib import Path
sys.path.insert(1, "MEMTrack/src")
from data_prep_utils import process_data
from data_feature_gen import create_train_data, create_test_data
from inferenceBacteriaRetinanet_Motility_v2 import run_inference
from GenerateTrackingData import gen_tracking_data
from Tracking import track_bacteria
from TrackingAnalysis import analyse_tracking
from GenerateVideo import gen_tracking_video
def find_and_return_csv_files(folder_path, search_pattern):
search_pattern = f"{folder_path}/{search_pattern}*.csv"
csv_files = list(glob.glob(search_pattern))
return csv_files
def read_video(video, raw_frame_dir, progress=gr.Progress()):
# read video and save frames
video_dir = str(random.randint(111111111, 999999999))
images_dir = "Images without Labels"
frames_dir = os.path.join(raw_frame_dir, video_dir, images_dir)
os.makedirs(frames_dir, exist_ok=True)
count = 0
frames = []
cap = cv2.VideoCapture(video)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Get total frames
processed_frames = 0
while cap.isOpened():
ret, frame = cap.read()
if ret is False:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame_path = os.path.join(frames_dir, f"{count}.jpg")
cv2.imwrite(frame_path, frame)
frames.append(frame)
count += 1
processed_frames += 1
print(f"Processing frame {processed_frames}")
progress(processed_frames / total_frames, desc=f"Reading frame {processed_frames}/{total_frames}")
cap.release()
return video_dir
def download_and_unzip_google_drive_file(file_id, output_path, unzip_path):
url = f'https://drive.google.com/uc?id={file_id}'
url="https://drive.usercontent.google.com/download?id=1agsLD5HV_VmDNpDhjHXTCAVmGUm2IQ6p&export=download&&confirm=t"
gdown.download(url, output_path, quiet=False, )
with zipfile.ZipFile(output_path, 'r') as zip_ref:
zip_ref.extractall(unzip_path)
def clear_form():
return None, None, None, 60, 60 # Resetting inputs and sliders to default or empty states
# @spaces.GPU()
def doo(video, tiff_stack, images, fps, min_track_length, progress=gr.Progress()):
# download and unzip models
# file_id = '1agsLD5HV_VmDNpDhjHXTCAVmGUm2IQ6p'
# output_path = 'models.zip'
# unzip_path = './'
# download_and_unzip_google_drive_file(file_id, output_path, unzip_path)
# Initialize paths and variables
raw_frame_dir = "raw_data/" # Path to raw videos vefore processing (same format as sample data)
final_data_dir = "data" # root directory to store processed videos
out_sub_dir = "bacteria" # sub directory to store processed videos
target_data_sub_dir = os.path.join(final_data_dir, out_sub_dir)
feature_dir = "DataFeatures" # directory to store processed videos
test_video_list = ["video1"] # list of videos to generate features for
exp_name = "collagen_motility_inference" # name of experiment
feature_data_path = os.path.join(feature_dir, exp_name)
min_track_length = min_track_length
#path to saved models
no_motility_model_path = "models/motility/no/collagen_optical_flow_median_bkg_more_data_90k/"
low_motility_model_path = "models/motility/low/collagen_optical_flow_median_bkg_more_data_90k/"
mid_motility_model_path = "models/motility/mid/collagen_optical_flow_median_bkg_more_data_90k/"
high_motility_model_path = "models/motility/high/collagen_optical_flow_median_bkg_more_data_90k/"
# Clear previous results and data
if os.path.exists(final_data_dir):
shutil.rmtree(final_data_dir)
if os.path.exists(raw_frame_dir):
shutil.rmtree(raw_frame_dir)
print("deleted raw_frame_dir")
if os.path.exists(feature_dir):
shutil.rmtree(feature_dir)
print("deleted feature dir")
print("check dirs")
print(os.listdir("."))
# Read video and store frames separately for object detection model
video_dir = read_video(video, raw_frame_dir, progress=gr.Progress())
# Process raw frames and store in acceptable format
progress(1 / 3, desc=f"Processing Frames {1}/{3}")
video_num = process_data(video_dir, raw_frame_dir, final_data_dir, out_sub_dir)
progress(3 / 3, desc=f"Processing Frames {3}/{3}")
# generate features for raw frames for the object detector model
progress(1 / 3, desc=f"Generating Features {1}/{3}")
create_test_data(target_data_sub_dir, feature_dir, exp_name, test_video_list)
progress(3 / 3, desc=f"Features Generated {3}/{3}")
progress(1 / 3, desc=f"Loading Models {1}/{3}")
# Run Object Detection Code
for video_num in [1]:
#To genearate testing files for all motilities
run_inference(video_num=video_num, output_dir=no_motility_model_path,
annotations_test="All", test_dir=feature_data_path, register_dataset=True)
progress(3 / 3, desc=f"Models Loaded{3}/{3}")
run_inference(video_num=video_num, output_dir=mid_motility_model_path,
annotations_test="Motility-mid", test_dir=feature_data_path, register_dataset=False)
progress(1 / 3, desc=f"Running Bacteria Detection {1}/{3}")
run_inference(video_num=video_num, output_dir=high_motility_model_path,
annotations_test="Motility-high", test_dir=feature_data_path, register_dataset=False)
progress(2 / 3, desc=f"Running Bacteria Detection {2}/{3}")
run_inference(video_num=video_num, output_dir=low_motility_model_path,
annotations_test="Motility-low", test_dir=feature_data_path, register_dataset=False)
progress(3 / 3, desc=f"Running Bacteria Detection {3}/{3}")
# Tracking where GT is present
progress(0 / 3, desc=f"Tracking {0}/{3}")
for video_num in [1]:
gen_tracking_data(video_num=video_num, data_path=feature_data_path, filter_thresh=0.3)
progress(1 / 3, desc=f"Tracking {1}/{3}")
track_bacteria(video_num=video_num, max_age=35, max_interpolation=35, data_path=feature_data_path)
progress(2 / 3, desc=f"Tracking {2}/{3}")
folder_path = analyse_tracking(video_num=video_num, min_track_length=min_track_length, data_feature_path=feature_data_path, data_root_path=final_data_dir, plot=True)
progress(3 / 3, desc=f"Tracking {3}/{3}")
# Generate video with tracked frames only at the given filter threshold
output_video1 = gen_tracking_video(video_num=video_num, fps=fps, data_path=feature_data_path)
# Generate video with all frames at the given filter threshold
output_video2 = gen_tracking_video(video_num=video_num, fps=fps, data_path=feature_data_path, all_images=True)
# Generate video with all frames with all tracks, so no filter threshold
output_video3 = gen_tracking_video(video_num=video_num, fps=fps, data_path=feature_data_path, all_images=True)
final_videos = [os.path.basename(output_video1), os.path.basename(output_video2), os.path.basename(output_video3)]
shutil.copy(output_video1, final_videos[0])
shutil.copy(output_video2, final_videos[1])
shutil.copy(output_video3, final_videos[2])
print(output_video1)
print(final_videos)
search_pattern = "TrackedRawData"
tracking_preds = find_and_return_csv_files(folder_path, search_pattern)
return final_videos[0], final_videos[1], final_videos[2], tracking_preds
if __name__ == "__main__":
examples = [['RBS_2_4_h264.mp4'], ['RBS_4_4_h264.mp4'], ['RBS_7_6_h264.mp4']]
title = "🎞️ MEMTrack Bacteria Tracking Video Tool"
description = "Upload a video or selct from example to track. <br><br> If the input video does not play on browser, ensure its in a browser accetable format. Output will be generated iirespective of playback on browser. Refer: https://colab.research.google.com/drive/1U5pX_9iaR_T8knVV7o4ftKdDoGndCdEM?usp=sharing"
with gr.Blocks() as demo:
gr.Markdown(f"# {title}")
gr.Markdown(description)
with gr.Row():
with gr.Column():
gr.Markdown("Select the appropriate tab to upload a video, a TIFF stack, or a folder containing image frames.")
with gr.Tabs():
with gr.Tab("Upload Video"):
video_input = gr.Video(label="Video File")
with gr.Tab("Upload TIFF Stack"):
tiff_input = gr.File(label="TIFF File", file_types=["tif", "tiff"])
with gr.Tab("Upload Images"):
image_input = gr.File(label="Image Files", file_types=["jpg", "jpeg", "png", "tif", "tiff"], file_count="multiple")
# Common sliders for all inputs
fps_slider = gr.Slider(minimum=1, maximum=100, step=1, value=60, label="Output Video FPS")
track_length_slider = gr.Slider(minimum=0, maximum=1000, step=1, value=60, label="Minimum Track Length Threshold")
# Submit and Clear buttons
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear")
clear_button.click(
fn=clear_form,
inputs=[],
outputs=[video_input, tiff_input, image_input, fps_slider, track_length_slider]
)
with gr.Column():
outputs = [
gr.Video(label="Tracked Video (tracked frames)"),
gr.Video(label="Tracked Video (all frames)"),
gr.Video(label="Tracked Video (all frames, all tracks)"),
gr.Files(label="CSV Data")
]
# submit_button = gr.Button("Process Input")
submit_button.click(
fn=doo,
inputs=[video_input, tiff_input, image_input, fps_slider, track_length_slider],
outputs=outputs
)
demo.launch(share=True, debug=True)
# inputs = [
# gr.Video(label="Input Video"),
# gr.Slider(minimum=1, maximum=100, step=1, value=60, label="Output Video FPS" ),
# gr.Slider(minimum=0, maximum=1000, step=1, value=60, label="Minimum Track Length Threshold")
# ]
# iface = gr.Interface(
# fn=doo,
# inputs=inputs,
# outputs=outputs,
# examples=examples,
# title=title,
# description=description,
# cache_examples=False,
# )
# if __name__ == "__main__":
# iface.launch(share=True, debug=True)
|