import torch from expand import * from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding from dataclasses import dataclass import time type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast def find_next_tokens(model: PreTrainedModel, inputs: BatchEncoding, tokenizer: Tokenizer) -> list[list[tuple[int, float]]]: input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] print("Running inference") start_time = time.time() with torch.no_grad(): outputs = model(input_ids=input_ids, attention_mask=attention_mask) print(f"Inference done, took {time.time() - start_time} seconds") start_time = time.time() logits: torch.Tensor = outputs.logits[:, -1, :] log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1) print(f"Log probs done, took {time.time() - start_time} seconds") start_time = time.time() result = [] print(f"Resulting tensor: {log_probs.shape}") for probs in log_probs: result.append([(i, p.item()) for i, p in enumerate(probs)]) print(f"Result done, took {time.time() - start_time} seconds") return result def prepare_inputs(contexts: list[list[int]], tokenizer: Tokenizer, device: torch.device) -> BatchEncoding: texts = [tokenizer.decode(context, skip_special_tokens=True) for context in contexts] return tokenizer(texts, return_tensors="pt", padding=True).to(device) @dataclass class LLMBatchExpander(BatchExpander): model: PreTrainedModel tokenizer: Tokenizer def expand(self, batch: Batch) -> BatchCandidates: inputs = prepare_inputs([s.get_all_tokens() for s in batch.items], self.tokenizer, self.model.device) next_tokens = find_next_tokens(self.model, inputs, self.tokenizer) start_time = time.time() results = [] print(f"Batch size: {len(batch.items)}, next tokens size: {len(next_tokens)}") for s, next_tokens in zip(batch.items, next_tokens): print(f"Series {s.id}, {len(next_tokens)=}") expansions = [Expansion(token=token, cost=cost) for token, cost in next_tokens] results.append(TokenCandidates(series=s, expansions=expansions)) print() print(f"Token candidates done, took {time.time() - start_time} seconds") return BatchCandidates(items=results) def create_stopping_criterion_llm(tokenizer: Tokenizer) -> Callable[[Series, Expansion], bool]: def stopping_criterion(series: Series, expansion: Expansion) -> bool: d = default_completion_criterion(series, expansion) if d: return d token_str = tokenizer.decode([expansion.token]) starts_with_space = token_str.startswith(" ") # print(f"-----{token_str}-----, {starts_with_space=}") is_first_token = len(series.expansions) == 0 if is_first_token and not starts_with_space: return True if not is_first_token and starts_with_space: return True return False return stopping_criterion